1. First calculate A, B, , and
.
|
2.696 |
hr-1 |
|
0.104 |
hr-1 |
A |
1.142 |
mg/L |
B |
1.142 |
mg/L |
Use Cp = A * e- * t + B * e-
* t with
>
to calculate Cp at each time point.
Thus:
Time(hr) |
Cp (mg/L) |
0 |
2.28 |
0.25 |
1.69 |
0.5 |
1.38 |
1 |
1.11 |
2 |
0.93 |
4 |
0.75 |
6 |
0.61 |
8 |
0.50 |
10 |
0.40 |
12 |
0.33 |
Time (hr) |
Concentration (mg/L) |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A |
9.100 |
mg/L |
B |
8.789 |
mg/L |
|
1.52646 |
hr-1 |
|
0.22948 |
hr-1 |
k21 |
0.867 |
hr-1 |
kel |
0.404 |
hr-1 |
k12 |
0.485 |
hr-1 |
Vc |
11.2 |
L |
Varea |
19.7 |
L |
3. Using a dosing interval close to the terminal half-life. Half-life (t1/2) = ln(2)/0.14 = 4.95 hr. Using a dosing interval (tau) of 4, 6, or 12 hours gives:
|
0.14 |
0.14 |
0.14 |
hr-1 |
Varea |
32.8 |
32.8 |
32.8 |
L |
F |
0.85 |
0.85 |
0.85 |
|
Cbar |
15 |
15 |
15 |
mg/L |
Tau |
4 |
6 |
12 |
hr |
Dose |
324.1 |
486.2 |
972.4 |
mg |
Dose' |
325 |
475 |
975 |
mg |
Cbar' |
15.04 |
14.65 |
15.04 |
mg/L |
4. Using the noncompartmental approach
Dose (iv) |
200 |
mg |
AUC (iv) |
87.5 |
mg.hr.L-1 |
AUMC (iv) |
745 |
mg.hr2.L-1 |
Dose (po) |
500 |
mg |
AUC (po) |
116.74 |
mg.hr.L-1 |
AUMC (po) |
1095 |
mg.hr2.L-1 |
MRT (iv) |
8.514 |
hr |
MRT (po) |
9.380 |
hr |
MAT (po) |
0.866 |
hr |
k' (iv) |
0.117 |
hr-1 |
ka' (po) |
1.155 |
hr-1 |
CL (iv) |
2.286 |
L.hr-1 |
F (po) |
0.534 |
|
Vss |
19.5 |
L |