Pharmaceutical Analysis

Spectrophotometric Analysis
High Performance Liquid Chromatography
Gas Liquid Chromatography
Radioimmunoassay
Enzyme Multiplied Immunoassay
Fluoroimmunoassay

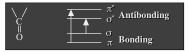
Assay	VS1	teps	S

- Separation (Dosage form Biological Sample)
 - Centrifugation
 - $\ Extraction$
 - Chromatography
 - $\ Immuno assay$
- Quantitation
 - Spectrophotometric (absorbance, fluorescent)
 - Radioactivity

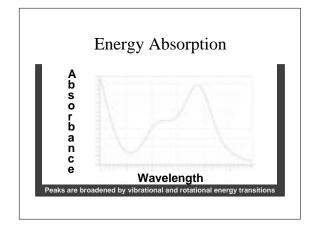
Separation Step

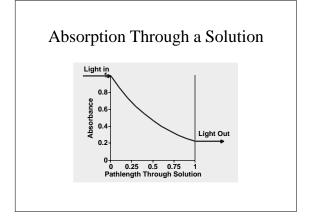
- Centrifugation
 - Excipients
 - Macromolecules
- Extraction
 - pH-pKa partition
 - Lipid/Aqueous solubility
- Chromatography
 - Adsorption, partitioning, molecular size, ion-exchange
- Immunoassay

Quantitation Step


- Absorbance
- Fluorescence
- Radioactivity
- Electrochemical
- Other

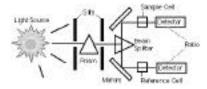
Spectrophotometric Analysis


- Theory
 - Beer-Lambert's Law
- Equipment
 - Single Beam
 - Double Beam
- Application
 - Quality control
 - HPLC


Absorption Spectroscopy

- Absorption
 - Absorption by Molecules in Solution
 - Electronic, Vibrational, and Rotational Energy

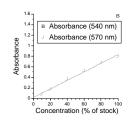
Electronic Transitions



Beer-Lambert's Law

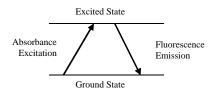
- Absorbance proportional to path length and concentration
- $A = a \cdot b \cdot c$
- where $A=absorbance\ and\ a=absorptivity\ (\),\ b=pathlength,\ and\ c=concentration$
- If b is 1 cm and c is in g/100 ml the absorptivity is given as $A_{1\,\text{cm}}^{1/2}$ at wavelength x. Absorptivity may also be called the extinction coefficient or absorption coefficient

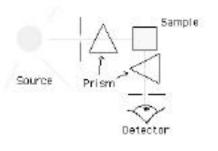
Double Beam Instrument


Redrawn from: Bauer, H.H., Christian, G.D., and O'Reilly, J.E. 1978 Instrumental Analysis, Figure 7.14, page 187

Single Beam Instrument

Application


• Standard Curve


Fluorescence Spectroscopy

- Molecule absorbs energy and immediately emits energy at a higher wavelength (lower energy)
- Excitation and emission wavelengths specific to the compound
- \bullet Emission measured at 90° to the excitation light path
- Emission proportional to drug concentration

Fluorescence Transitions

Fluorescence Instrument

