Numerical Integration	
Numerical Integration • Objectives: - Understand the process of Numerical Integration - Understand some of the Numerical Integration methods (algorithms) - Consider the Advantages and Disadvantages of some these methods	
Numerical Integration Methods • Point-slope (Euler's) Method – Step-Size • Runge-Kutta Methods • RKF45 Method • Predictor-Corrector Method • Gear's Method	

Simple Numerical Integration

Point-Slope (Euler's) Method

- Point-Slope Method
- Point
- Initial Value X₁(0)
- Slope
 - Differential Equation $k1 \bullet X_1$

The Equation
$$\frac{dX_1}{dt} = -k1 \cdot X_1$$

An Example - Euler's Method

• Choose stepsize (ss) = 0.1

 $X_1(0) = 100$ k1 = 0.25

An Example - Euler's Method

Time	ΔX_1	\mathbf{X}_1
0.0		100
0.1	-2.50	97.50
0.2	-2.44	95.06
0.3	-2.38	92.68
0.4	-2.32	90.36
0.5	-2.26	88.10

 $X_1(0) = 100$ k1 = 0.25

Euler's Method

$$\frac{dCp}{dt} = -kel \bullet Cp$$

$$\mathbf{t}_1 = \mathbf{t}_0 + \mathbf{t}$$

$$Cp_1 = Cp_0 + \frac{dCp}{dt} \bullet t$$

Euler's Method

- Another Example
 - $-\ Cp_0\ 100\ mg/L$ and $kel=0.3\ hr^1$

Stepsize	Numerical	Analytical	% Error	Number of Steps
1	70.0	74.08	5.51	1
0.5	85.0	86.07	1.24	2
0.25	92.5	92.77	0.30	4
0.1	97.0	97.04	0.05	10

Euler's Method

- Simple mathematically
- Requires small step size for accuracy

Runge-Kutta Method

• Fourth Order

$$C_1 = C_0 + \frac{1}{0} \cdot [k_1 + 2k_2 + 2k_3 + k_4]$$

$$k_1 = \Delta t \cdot f(t_0, C_0) = -ket \cdot C_0 \cdot \Delta t$$

$$k_2 = \Delta t \cdot f(t_0 + \frac{\Delta t}{2}, C_0 + \frac{k_1}{2})$$

$$k_3 = \Delta t \cdot f(t_0 + \frac{\Delta t}{2}, C_0 + \frac{k_2}{2})$$

$$k_4 = \Delta t \cdot f(t_0 + \Delta t, C_0 + k_3)$$

Runge-Kutta Method

• Fourth Order

Runge-Kutta Method

• $Cp_0 = 100 \text{ mg/L}$ and $kel = 0.3 \text{ hr}^{-1}$

Stepsize	Numerical	Analytical
1	74.084	74.082
0.5	86.071	86.071
0.25	92.774	92.774
0.1	97.044	97.045

- More Accurate with Four Evaluations per step
- No Automatic Stepsize Control

Runge Kutta Fehlberg

- RKF45
 - Fifth Evaluation used to give Automatic Stepsize Adjustment
 - Very Efficient for Typical Pharmacokinetic Systems
 - Use this Method as default with Boomer

Predictor-Corrector Methods

- Adam's Method and variations
 - Larger Stepsize Possible
 - More Complex Calculations

Predictor-Corrector Method

• Adam's Method

Predictor-Corrector

- Gear's Method
 - Very Efficient for 'Stiff' Systems
 - 'Stiff' Systems include Both Very Fast and Very Slow Processes (Rate constants)
 - Difference between Fastest and Slowest Extreme

 $\frac{k_{fastest}}{k_{downer}}$ 500

Numerical Integration

• Comparison between Numerical Integration Methods

	Runge Kutta	RKF45	Adam's	Gear's
ka/kel 1.0	15	2	2	2
ka/kel 10	38	2	3	4
ka/kel 100	174	7	14	4
ka/kel	*	50	110	4
1000				

Numerical Integration

- Boomer
 - RK, RKF45, Adams', Gear's
- SAAM II
 - Rosenbrock (Stiff), RKF45, Pade (Special)
- WinNONLIN
- ADAPT
 - LSODA (Switches between Adam's and Gear's Method)