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Optimization

or how the Computer finds the ‘ best-fit’ Line(s)

Objectives

— Understand the process of optimization

— Understand some of the optimization methods
(algorithms)

— Understand the Advantages and Disadvantages
of some these methods

Optimization

* The objective isto Reduce WSS by making
adjustment in the values of the Parameters of the
Model

» Advantages described in terms of

— Robustness
— Speed

 Disadvantages
- Lost
— Cost
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Optimization Algorithms

» Steepest Descent

* Gauss-Newton

e Marquardt

* Nelder Mead (Simplex)

Optimization

« Move across the Sum of Squares surface to
reach the Global Minimum

WSS = f ( Cyye, t, Wt (the data), P, C (the model))

Sum of Squares Surface
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Sum of Squares Surface

Global Minimum | H 0
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Steepest Descent Method

Pocket Creek and Hole-in-the-Wall Falls, Glacier Park, Montana from hitp:// pubcenter.comysilverking/g-
198 shtml

Steepest Descent Method
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« Direction Based on Slope of WSS Surface
 Step Length based on Linear Search
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 Always ‘downhill’
 Avoids ‘saddle points

» Sower close to minimum
* Linear search may cause problems
« Might ‘zigzag’ down valleys

Steepest Descent Method

» Efficient further from the minimum
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* Single Parameter

¢ Multiple Parameters

PNEW = POLD -

PNEW = POLD -

dwss
dP
1°Wss
PP

Gauss-Newton Method

Chapter 11



9 April 2001

Gauss-Newton Method

« Numerical Differention
dT Differentiation Step Size
—for dWSS/dP type of calculations
* |terative Process
dC Convergence Criteria
— Smallest change in WSS
— Smallest change in P values

Gauss-Newton Method

« Relatively efficient (direction and step size
determined)
* Works well near the minimum

» May become lost with poor initial estimates
— Damping Gauss-Newton Method (start with
Simplex)

Damping Gauss-Newton Method
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Marquardt Method

dwss
-p .___dP
Puew = Powp @IZWSS@J,MQ
gIPIPE o
W term changes direction between Steepest
Descent and Gauss-Newton during the
iterative process
— Moves from Steepest Descent automatically to
the Gauss-Newton method to improve
efficiency with difficult problems

Marquardt Method

Elimination Rate Constant

13 18 23 28 33 38 43 48
Volume of Distribution 20

Marguardt Method

Initial Estimate Gauss-
kel V; Marquardt | Newton
0.51 42 6 7
0.51 10 4 4
0.15 10 3 3
0.15 42 5 4
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Nelder-Mead (Simplex) Method

» Develop smplex (shape) with m+1 points
* Reflect worst point through centroid
(center)
— Best - reflect further
— Good - repeat again
— Worst - reflect closer
» Simplex moves over WSS surface and
contacts around minimum

Simplex Method

« Relatively Robust
* Numerically less complicated

» Not very efficient for smple problems

Simplex Method
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Grid Search Method

Simply determine WSS at each point on the
grid of parameter values

May offer some protection against local
minima

Not very efficient especially with more
parameters (with 3 parameters and 10 points
per grid, 10 x 10 x 10 determinations
required)
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Optimization Methods

Boomer

— Gauss-Newton (Hartley), Damping Gauss-Newton,
Marquardt, Simplex

SAAM I
WinNONLIN

— Curve Stripping, Grid Search, Gauss-Newton (Hartley),
Gauss-Newton (Levenberg), Nelder-Mead (Simplex)

ADAPT Il
— Nelder-Mead (Simplex)

Chapter 11



