Outimi-ation	
Optimization	
or how the Computer finds the 'best-fit' Line(s)	
	ı
	1
Oh is saisses	
Objectives	
- Understand the process of optimization	
 Understand some of the optimization methods (algorithms) 	
 Understand the Advantages and Disadvantages of some these methods 	
]
Optimization	
The objective is to Reduce WSS by making adjustment in the values of the Parameters of the	
Model • Advantages described in terms of	
- Robustness - Speed	
• Disadvantages – Lost	
– Cost	

Optimization Algorithms

- Steepest Descent
- Gauss-Newton
- Marquardt
- Nelder Mead (Simplex)

Optimization

• Move across the Sum of Squares surface to reach the Global Minimum

 $WSS = f(C_{obs}, t, Wt (the data), P, C (the model))$

Sum of Squares Surface

Steepest Descent Method

Pocket Creek and Hole-in-the-Wall Falls, Glacier Park, Montana from http://pubcenter.com/silverking/

Steepest Descent Method

$$P_{NEW} = P_{OLD} - h \bullet \frac{WSS}{P}$$

- Direction Based on Slope of WSS Surface
- Step Length based on Linear Search

Steepest Descent Method

- Always 'downhill'
- · Avoids 'saddle points'
- Efficient further from the minimum
- Slower close to minimum
- Linear search may cause problems
- Might 'zigzag' down valleys

Steepest Descent Method

Gauss-Newton Method

• Single Parameter

$$P_{\text{NEW}} = P_{\text{OLD}} - \frac{\frac{dWSS}{dP}}{\frac{d^2WSS}{dP^2}}$$

• Multiple Parameters

$$P_{\text{NEW}} = P_{\text{OLD}} - \frac{\frac{dWSS}{dP}}{\frac{^2WSS}{PP}}$$

Gauss-Newton Method

- Numerical Differention dT Differentiation Step Size
 - for dWSS/dP type of calculations
- Iterative Process dC Convergence Criteria
 - Smallest change in WSS
 - Smallest change in P values

Gauss-Newton Method

- Relatively efficient (direction and step size determined)
- Works well near the minimum
- May become lost with poor initial estimates
 - Damping Gauss-Newton Method (start with Simplex)

Damping Gauss-Newton Method

Marquardt Method

$$P_{NEW} = P_{OLD} - \frac{\frac{dWSS}{dP}}{\frac{^2WSS}{P~P}~+\mu I} \label{eq:PNEW}$$

- μ term changes direction between Steepest Descent and Gauss-Newton during the iterative process
 - Moves from Steepest Descent automatically to the Gauss-Newton method to improve efficiency with difficult problems

Marquardt Method

Marquardt Method

Initial Estimate			Gauss-	
kel	V	Marquardt	Newton	
0.51	42	6	7	
0.51	10	4	4	
0.15	10	3	3	
0.15	42	5	4	

Nelder-Mead (Simplex) Method

- Develop simplex (shape) with m+1 points
- Reflect worst point through centroid (center)
 - Best reflect further
 - Good repeat again
 - Worst reflect closer
- Simplex moves over WSS surface and contacts around minimum

Simplex Method

- Relatively Robust
- Numerically less complicated
- Not very efficient for simple problems

Simplex Method

Grid Search Method

- Simply determine WSS at each point on the grid of parameter values
- May offer some protection against local minima
- Not very efficient especially with more parameters (with 3 parameters and 10 points per grid, 10 x 10 x 10 determinations required)

\sim	. •	•	. •	3. 4	r .1	1
()	ntın	n17	ation	1\(/ \)	leth	nde
$\mathbf{\mathcal{O}}$		\mathbf{H}	auon	TAT	Cui	lous

- Boomer
 - Gauss-Newton (Hartley), Damping Gauss-Newton, Marquardt, Simplex
- SAAM II
- WinNONLIN
 - Curve Stripping, Grid Search, Gauss-Newton (Hartley),
 Gauss-Newton (Levenberg), Nelder-Mead (Simplex)
- ADAPT II
 - Nelder-Mead (Simplex)