	1
Weighting Data	
	-
Why all data are not equal	
Weighting Objectives	
Weighting - Objectives	
To understand why all data are not equal	
 To understand measures of data accuracy To understand how to use different 	
weighting schemes	
 To understand why different weighting schemes might be used 	
Waighting Schames	
Weighting Schemes	
 Equal Weight Reciprocal Variance	
Weighting Schemes	
Iteratively Reweighted Least Squares	
Extended Least Squares	

Chapter 13

Equal Weight

- Equal (same, similar) error in each data point
- Value of each data point similar
- Error in each data point small

Equal Weight Data after Oral Administration Cp range 5 to 15 mg/L

Reciprocal Variance

- Large range of data values
- Error in data points variable
- Relatively larger error in data
- Magnitude of data in different sets are quite different

Reciprocal Variance

Data after I.V. Administration

Reciprocal Variance

Weight =
$$\frac{1}{\text{Variance}}$$

• Estimate Variance or at least how Variance varies with Observed Value

Weighting Scheme

• Variance Observed Value

Weight =
$$\frac{1}{\text{Observed Value}}$$

- Variance directly proportional to the measured value
 - For example with radioactive counting

Weighting Schemes

• Variance Observed Value²

Weight =
$$\frac{1}{\text{Observed Value}^2}$$

- Variance directly proportional to the square of the measured value
 - For example when the assay involves serial dilutions

Weighting Schemes

Variance = $a \cdot Obs^b$

- Plot Variance versus Observed Mean on log-log paper.
 - Determine a and b from intercept and slope, respectively

Wagner, J.G. 1975 Fundamentals of Clinical Pharmacokinetics, Drug Intelligence Publications, Hamilton, IL, page289

Estimate Variance from Data Variance' = 0.0032 • Cp^{1.96}

Weighting Schemes

Variance = $c^b + a \cdot Obs^b$

• Assay sensitivity is c and a is a measure of the assay precision

Weighting Schemes

 $Variance = a \bullet Obs^b \bullet c^{(t_{last} - t)}$

- Older assay values, t smaller, have less weight
 - -c = 1.05 (useful)
- Could be used for clinical samples collected over a number of days (weeks)

Iteratively Reweighted Least Squares

Variance = f(Calculated Value)

• Very low observed value would be given very high weight with weight = 1/Obs^2, for example

Iteratively Reweighted Least Squares

- Variance = Calc⁰
- Variance = Calc¹
- Variance = Calc²

Extended Least Squares

- Weighting Scheme Parameters are obtained from the data DURING the fitting process
- Generally need more data since there are more parameters
- Different Fitting Algorithms needed and not universally available

Extended Least Squares

$$\label{eq:objective} \begin{aligned} Objective \ function = & & \frac{\left(Calc_{i} - Obs_{i}\right)^{2}}{V} + lnV \\ where & & \end{aligned}$$

$$V = f(vp, Calc or Obs)$$

E.g.
$$V = a \cdot Calc^b$$

Or
$$V = a + b \cdot Calc + c \cdot Calc^2$$

Weighting Example

- Fitting Plasma and Urine Data together
- Magnitude of the Data quite different
- Error/Variance formula different
 - Plasma try constant Coefficient of Variation
 - Urine try constant Standard Deviation

Plasma Data

• Coefficient of Variation = 5%

Urine Data

• Standard Deviation = 5 mg

Boomer Output

Title: Fit to two lines simultaneously
Input: From Ch9905b.BAT
Output: To Ch9905b.OUT
Data for [Drug] came from Ch9905bp.DAT
Data for Drug in Urine came from Ch9905bu.DAT
Fitting algorithm: DAMPING-GAUSS/SIMPLEX
Weighting for [Drug] by 1/a*Cp(Obs)^b
With a = 0.250E-02 and b = 2.000
Weighting for Drug in Urine by 1/a*Cp(Obs)^b
With a = 25.00 and b = 0.0000
Numerical integration method: 2) Fehlberg RKF45
with 2 de(s)
With relative error 0.1000E-03
With absolute error 0.1000E-03
DT = 0.1000E-02 PC = 0.1000E-04 Loops = Damping = 1