Selection of 'Best' Model	
	1
Objectives	
Define 'best' model	
 Consider factors associated with output plots; 	
 Consider parameter variability; and Consider statistical parameters such as AIC	
and F-test – in the selection of a 'best' model	
- in the selection of a best model	
	1
Doct Model	
Best Model	
 Empirical or Physical Can Theory provide model and parameters	
Smallest model given the data available and	
proposed useCan the parameters be determined (Identifiable)	
What will the model be used for	
• Is the model too small?	
• Is the model too big?	

Calculated versus Observed Plots

- Look for Systematic Deviations
- Subjectively Evaluate Alternate Models
 - Distribution Phase
 - Straight Line Elimination on Semi-log Plots
 - Plasma and Urine Date to be Included in Model

Calculated versus Observed Plot

Weighted Residual Plot

- Look for Patterns which may Suggest Alternate Models
- Definite Pattern may Indicate a More Complex Model is Required

Weighted Residual Plots

Parameter Variability

- High Values for Coefficient of Variation
 - Large Values for Standard Deviations

Model Too Large Not Enough Data Too Much Error in the Data

Statistical Parameters

• AIC, Akaike's Information Criterion

 $AIC = N \bullet ln(WSS) + 2 \bullet M$

N = number of data points (non-zero wt) M = number of parameters (adjustable)

Used to Help Select 'Correct' Model Lower Number is Better

• MUST Use the Same Weighting Scheme

AIC

	M	N	WSS	AIC
				Value
One	2	12	2.02	12.4
Compartment				
Model				
Two	4	12	0.0769	-22.8
Compartment				
Model				
Three	6	12	0.0769	-18.8
Compartment				
Model				

F-Test

$$F = \ \frac{WSS_{_j} - WSS_{_k}}{WSS_{_k}} \ \times \ \frac{df_k}{df_j - df_k}$$

WSS = weighted sum of squares
df = degrees of freedom (N-M)
j, k are two fit results (same weighting
scheme), k with more parameters

Compare Calculated Value with Tabled Value

F-Test

	Calculated	Tabled	n,m
1 vs 2	101	4.46	2, 8
2 vs 3	0	5.14	2, 6

$$\begin{aligned} \mathbf{n} &= \mathbf{df_j} \cdot \mathbf{df_k} \\ \mathbf{m} &= \mathbf{df_k} \end{aligned}$$

General Method

- Design Experiment •
- Collect Data
- Develop Mathematical Model
- Model Data
- Evaluate Fit to Data
- Use Model

Objectives

- Define 'best' model
- Consider factors associated with output plots;
- Consider parameter variability; and
- Consider statistical parameters such as AIC and F-test
 - in the selection of a 'best' model