Chapter 21 1

Bioavailability Studies

Objectives

• Define terms related to bioavailability studies
• Understand examples of past problems
• Evaluate components of a bioavailability study
• Evaluate results from bioavailability studies

Reasons for Bioavailability Studies

• Comparison between products from different manufacturers
 – Innovator versus Generic
 – Bioequivalence determination (same ka and F ?)
• Comparison between different types of products
 – Slow release versus fast release
 – Formulation development (same F ?)
Definitions

- Bioavailability
 - Rate and Extent of Absorption
 - Therapeutic component delivered to blood
- Bioequivalent drug products
 - Pharmaceutical equivalence or alternative with rate and extent not significantly different
 - Rate change may be intentional

Definitions (contd)

- Bioequivalence requirement
 - In vitro / in vivo requirement for marketing
- Brand Name (Trade name)
- Chemical Name
- Drug product (finished dosage form)
- Generic name (common name, approved name)

Definitions (contd)²

- Pharmaceutical Alternative
 - Same therapeutic compound (or precursor)
 - Dosage form, salt, ester may vary
- Pharmaceutical Equivalent
 - Same active drug ingredient
 - Maybe different inactive excipients
- Both exhibit same in vitro / in vivo results
 - In vitro / in vivo correlation
Past Bioavailability Problems

• Examples pre-1976
 – More attention given to identifying problems
 – More extensive requirements
 – Examples
 • Chlorpropamide
 • Digoxin
 • Phenytoin
 – Acetazolamide, Aminosalicylate, Ampicillin, Aspirin,
 Ascorbic Acid, Chloramphenicol, Chlorothiazide, Diazepam,
 Furosemide, Iron, Levodopa, + 10

Chlorpropamide

One (of three) products relative $F = 0.5$

Digoxin

• 15 cases of toxicity between Oct/Dec 1975 in Israel
• Local manufacturer altered formulation
 – Improved dissolution
 – Two fold increase in absorption based on urine data
Phenytoin

- Phenytoin intoxication in 1968 and 1969 in Australia
 - Lactose substituted for calcium sulfate
 - Higher bioavailability with lactose

More Recent FDA Recalls

- FDA Web Site
- CDER Web Site
- FDA Enforcement Reports
 - Other Dissolution Problems
 - http://www.cpb.ouhsc.edu/fda/enf/enf00375.html
 - http://www.cpb.ouhsc.edu/fda/enf/enf00367.html
 - http://www.cpb.ouhsc.edu/fda/enf/enf00366.html

Bioavailability - Bioequivalence Studies

- Bioavailability Study
 - Attempt to determine absolute bioavailability
 - Compare different routes or dosage forms
- Bioequivalence Study
 - Determine if products are bioequivalent
 - Similar/same dosage form
 - Maybe required before marketing
Bioequivalence Study

- Dosage form compared with another in human bioavailability study
- Doses generally given by the same route
- Relative bioavailability determined
- If bioequivalent - no significant difference

Reasons for Bioequivalence Requirement

- Clinical results indicate varied results with different products
- Different products not bioequivalent in previous studies
- Narrow therapeutic range
- Low solubility and/or large dose
- Absorption previously shown to be somewhat less than 100%

Bioavailability Study Characteristics

- Drug
- Drug product
- Subjects
 - Health, age, weight, enzyme status, number
- Assay
- Design
- Data analysis
Drug

• Must be the same drug
 – Different kel and V make comparison impossible (with different drugs)
• Pro-drug may be an exception
 – If primary purpose is delivery of the primary drug compound
 – Must be sure that the primary drug is formed and that the pro-drug doesn’t remain in significant quantities

Drug Product

• Comparison between similar products
• Bioequivalence studies are almost always between similar dosage forms: Product A versus Product B
• Bioavailability studies may be between different dosage form types or ROA’s

Subjects

• Health
 – Healthy - less variability
• Age
 – 18 - 35 yr to reduce variability
 – Children - elderly
• Weight
 – Normal proportions - similar distribution V (Insurance tables)
Subjects ...

- Enzyme status
 - Smoking versus non-smoking
 - Diet (charcoal - barbecue), prior medication
- Number
 - Large enough to see clinically significant differences (e.g. 20%)
 - Was commonly 10 to 20 but this may be low for high variability drugs - significant metabolism - power analysis

Methods

- Assay
 - Same assay method for all phases of the study
 - Different assays may react differently to metabolites or interfering species
 - Methods should be sensitive and specific
- Design
 - Usually complete cross-over design

Study Design

Complete cross-over: Each subject receives each product

<table>
<thead>
<tr>
<th>Two Products</th>
<th>Week 1</th>
<th>Week 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Group 2</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
Another Design

Three Products

<table>
<thead>
<tr>
<th></th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Group 2</td>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Group 3</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Group 4</td>
<td>A</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Group 5</td>
<td>C</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Group 6</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
</tbody>
</table>

Larger Designs

- May not be complete cross-over
 - Incomplete design
 - Each subject may receive 1/2 or 1/3 of the dosage forms tested

Statistical Analysis

- Determine parameters
 - C_p versus time - data points
 - $C_{p_{max}}$, t_{max}, AUC
 - ka and F values
- Statistical analysis
 - t-test or ANOVA
- Confidence level - 5%
Sources of Variation

- Subject
- Week
- Treatment

Two Product Study

\[\text{Concentration (mg/L)} \]
\[\text{Time (hr)} \]

\[\begin{array}{cccc}
\text{Source of Variation} & \text{d.f.} & \text{SS} & \text{MS} & \text{F} & \text{Significance Level} \\
\hline
\text{Total} & 35 & 44.6 & - & - & - \\
\text{Subject} & 11 & 28.3 & 2.58 & 10.1 & p < 0.001 \\
\text{Week} & 2 & 0.14 & 0.068 & 0.27 & \text{n.s.} \\
\text{Treatment} & 2 & 11.0 & 5.552 & 21.8 & p < 0.001 \\
\text{Residual} & 20 & 5.09 & 0.255 & - & - \\
\end{array} \]
Objectives

- Define terms related to bioavailability studies
- Understand examples of past problems
- Evaluate components of a bioavailability study
- Evaluate results from bioavailability studies