Physiological Factors Affecting Oral Administration

Objectives

- Describe how membrane permeability affects oral absorption
- Describe how GI physiology affects oral absorption
- Discuss how parameters of Fick's first law equation affect transport across membranes

ADME Processes

Chapter 22

Factors Affecting Oral Absorption

- Membrane Physiology
 - Structure of the membrane
 - Transport processes
- Gastrointestinal Physiology
 - Characteristics
 - Gastric motility and emptying
 - Influence of food
 - Other factors

Membrane Physiology

- Membrane Structure
 - 1900 Overton Frog muscle experiments
 - Lipid molecules cross readily
 - Larger lipid insoluble drugs are restricted
 - Small polar molecules cross
 - Membrane mostly lipid with small pores
 - Protein layer on the surface

Davson-Danielli Model

Another Model

Membrane in the Body • Blood-brain barrier

- None or very few pores no polar materials can transfer but lipid material can transfer
- · Renal tubules
 - Drugs reabsorbed if lipid in nature (pH pKa dependent)
- Blood capillaries and Renal Glomerular membrane
 - Quite porous, molecules up to 69,000 Dalton
 - Allows removal of many polar compounds into urine

Transport across the Membrane

- · Carrier mediated
 - Active
 - Facilitated
 - P-glycoprotein (reverse pump)
- Passive
- Pinocytosis
- Ion pair

Chapter 22 3

Carrier Mediated

• Active or Facilitated

Active Transport

- Specialized mechanism (glucose, amino acids, 5-fluorouracil)
- Requires a carrier and form of energy
- Can be saturated
- Can proceed against a concentration gradient
- Competitive inhibition possible

Facilitated Transport

- Carrier required (e.g. vitamin B₁₂)
- Saturable
- Can't go against a concentration gradient, just faster down-hill

Chapter 22	4
------------	---

Passive Transport

- Common process for many drugs
- Diffusion occurs from high concentration to low concentration
- Attempt to equalize concentrations on each side of the membrane
- After drug partitions into the (lipid) membrane a concentration gradient can be established

Fick's First Law

• Transport across the membrane is diffusion controlled

Rate of Diffusion =
$$\frac{dM}{dt} = -\frac{D \cdot A \cdot (Ch - Cl)}{x}$$

Fick's First Law

- Parameters
 - D: Diffusion coefficient
 - A: Surface area
 - x: Membrane thickness
 - (Ch-Cl): Concentration difference

Diffusion Coefficient • Related to - Size and lipid solubility of the drug - Viscosity of the diffusion medium • Lipid solubility ↑ D ↑ dM/dt ↑ • Molecular size ↑ D ↓ dM/dt ↓

Surface Area

- As surface area † diffusion †
- For example, intestinal lining surface area (villae and microvillae) are much larger than that of stomach. Faster absorption from intestine

Membrane Thickness

- Thinner membranes lead to faster diffusion
- $\bullet\,$ e.g. membrane in the lung is quite thin.

Concentration Gradient

- Since V is at least 4 L (plasma volume) and often much larger concentrations in plasma (Cl) are often much lower than in the GI tract (Ch)
- Normally Cl << Ch

Other Mechanisms

- Pinocytosis
 - e.g. Vitamin A, D, E and K, peptides in newborn
- Ion Pair transport
 - e.g. quaternary ammonium compounds

Transport across the Membrane

Gastrointestinal Physiology

Characteristics of GI Tract

	pН	Membrane	Blood Supply	Surface Area	Transit Time	By-pass liver
Buccal	6	thin	good fast absorption	small	short	yes
Esophagus	6	very thick	-	small	short	-
Stomach	1 - 3 decompos- ition HA	normal	good	small	30 - 40 min	no
Duodenum	5 - 7 Bile duct	normal	good	very large	very short window effect	no
Small Intestine	6 - 7	normal	good	very large 10-14 ft 80 cm2/cm	3 hr	no
Large Intestine	6.8 - 7	normal	good	not large 4 - 5 ft	long up to 24 hr	some

Gastric Emptying - Motility

- Often better absorption from small intestine
- Thus slowed stomach emptying often delays absorption
- Slowed emptying greater degradation e.g. l-dopa

Gastric Emptying and Motility

Paracetamol Absorption

Heading, R.C. et al. 1973 "The dependence of paracetamol absorption on the rate of gastric emptying" Brit J Pcol 47, 415

Factors Affecting Gastric Emptying

- Volume ingested increase at first then slows
 - - bulky slower
- Meal type
 - Fatty food decrease
 - Carbohydrate decrease
 - Increased temperature increase

Factors Affecting Gastric Emptying...

- Body position lying on left decrease
- Drugs
 - Anticholinergic (e.g. atropine) decrease
 - Narcotic (e.g. morphine) decrease
 - Analgesics (e.g. aspirin) decrease

Effect of Food

- Food can affect stomach emptying
- · Generally extent not affected
- · Occasionally fatty food results in increase
 - Griseofulvin dissolved in fatty food
 - Propranolol interaction with food

Other Factors

- Intestinal motility and transit time
- Food retards transit

Objectives

- Describe how membrane permeability affects oral absorption
- Describe how GI physiology affects oral absorption
- Discuss how parameters of Fick's first law equation affect transport across membranes