Metabolism	
	J
Objectives	
J. 13	
Describe various processes by which drugs	
are metabolized	
Describe induction and inhibition of metabolism	
Use the venous equilibration model to	
describe hepatic clearance and the effect of	
liver disease on drug elimination	
Metabolism	
 Elimination by transformation of the drug Usually results in more polar compound	
easier urinary excretion - less reabsorption	
 usually inactive - hindered transport, doesn't fit 	
receptor	
Overall effect is removal of the drug effectEnzymatic catalysis	
Enzymatic catalysis Liver, intestinal wall, kidney, skin, blood	
, , , , , , , , , , , , , , , , , , , ,	I .

Metabolic Reactions

- Phase I
 - Oxidation
 - Reduction
 - $\ Hydrolysis$
- Phase II
 - Conjugation

Oxidation

- Phase I
- Addition of oxygen or removal of hydrogen
- Endoplasmic reticulum
- Common Reactions include:
 - Alkyl group -> alcohol
 - Aromatic ring -> phenol
 - Oxidation at S or N
 - Oxidative dealkylation

 - MonoamineoxidaseAlcohol dehydrogenase

Alkyl Group > Alcohol

• e.g. phenobarbitone

Aromatic Ring > Phenol

• e.g. phenytoin

Oxidation at S or N

• e.g. chlorpromazine

Oxidative Dealkylation

• e.g. phenacetin

Monoamine oxidase

• e.g. 5-hydroxytryptamine

Alcohol Dehydrogenase

—
$$\mathrm{CH_2}\text{-}\mathrm{CH_2}\text{-}\mathrm{OH}$$
 — — $\mathrm{CH_2}\text{-}\mathrm{CHO}$

Reduction

Phase I

- Addition of a hydrogen or removal of oxygen
- azo (-N=N-) or nitro group (-NO₂) --> amine (-NH₂)

Hydrolysis

Phase I

- · Addition of water
- In blood (esterases) and liver

Ester -> Alcohol and Acid

• e.g. aspirin to salicylic acid

$$R-O-C$$
 ROH + CH_3 -COOH

Amide -> Amine and Acid

• e.g. procainamide

$$R-N-C \overbrace{CH_3}^{O} R-NH_2 + CH_3 - COOH$$

Conjugation • Addition of a molecule in the body • May be preceded by a Phase I process

- Glucuronidation
 - In the liver

Phase II

- Aliphatic alcohols and phenols
- e.g. bilirubin, thyroxine, hydroxylated morphine

~	• .	•	
('On	บาดจt	ion	
COII	Jugai		•

- Acylation
 - Especially acetylation
 - e.g. sulfonamide

Insoluble Metabolites

- Metabolites can be less water soluble
- e.g. Acetyl metabolites of some sulfonamides
 - Resulted in crystalluria after precipitation in tubules
 - Remember all that water reabsorption
- Triple sulfas
- Development of sulfonamides with soluble metabolites

Active Metabolites

or Pro-Drugs?

• Amitriptyline to Nortriptyline

• Codeine to Morphine

Induction of Metabolism

Increase in Enzyme Activity

- · Phenobarbitone induces it's own metabolism and that of other drugs
 - phenytoin, warfarin
- Carbamazepine induces it's own metabolism over 4-5 days
 - $t_{1/2}$ from 36 to 21 hr
- · Cigarette smoking induces drug metabolism
 - e.g. theophylline $t_{1/2}$ 4 hr vs. 7 hr

Inhibition of Drug Metabolism

competitive inhibition

- Examples
 - warfarin inhibits tolbutamide, phenytoin
 - phenylbutazine inhibits warfarin
 - cimetidine inhibits warfarin
- Dose adjustment necessary

Systemic Clearance

with First Order Kinetics

• single dose

$$CL = \frac{F \bullet Dose}{AUC} = \frac{0.693 \bullet V_{area}}{t_{1/2}}$$

• multiple dose (at Steady State)

$$CL = \frac{k0}{Cn^{ss}} = \frac{F \cdot Dos}{\overline{Cn} \cdot }$$

Venous Equilibration Model

for organ (liver) clearance

Venous Equilibration Model...

· Measuring drug concentration entering and leaving liver

Organ Clearance=
$$\frac{Q_L \cdot (Ca - Cv)}{Ca} = Q_L \cdot E$$

 $\bullet\,$ where Q_L is liver blood flow and E is the extraction ratio

Extraction Ratio

Values from 0 to 1

- Fraction Removed by Liver in one Pass
- High Value of E means
 - high clearance by the liver
 - very little unmetabolized gets through unchanged
- Low Value of E means
 - little metabolism
- ullet CL_L and E measures of extent of metabolism

Parameters of the Model

• Total hepatic blood flow, Q • Fraction unbound, fu ullet Free intrinsic clearance, CL_{int} - clearance from liver plasma water - no flow or binding constraints - saturable since enzyme mediated

The Mathematical Model

$$\begin{split} CL &= Q \bullet \frac{fu \bullet CL_{int}}{\left(Q + fu \bullet CL_{int}\right)} = \frac{Q \bullet CL_{int}^{total}}{Q + CL_{int}^{total}} \\ with & E = \frac{fu \bullet CL_{int}}{Q + fu \bullet CL_{int}} \\ CL &= Q \bullet E \end{split}$$

• Can consider effect of each parameter on overall hepatic clearance

Flow Limited Drugs

$$high \; fu {\color{red} \bullet} CL_{int} \; value$$

$$\begin{split} & \text{High fu} \bullet \text{CL}_{int} \Big(= \text{CL}_{int}^{total} \Big) \\ & \text{fu} \bullet \text{CL}_{int} >> Q \\ & \text{CL} = Q \bullet \frac{\text{fu} \bullet \text{CL}_{int}}{\text{fu} \bullet \text{CL}_{int}} = Q \\ \bullet & \text{thus CL is flow limited (equal to Q)} \end{split}$$

- independent of changes in fu or CL_{int}
- e.g. lidocaine, propranolol, morphine

Capacity Limited Drugs

low fu• CL_{int} value

$$\begin{aligned} & Low \ fu \bullet CL_{int} \left(= CL_{int}^{total} \right) \\ & fu \bullet CL_{int} << Q \\ & CL = Q \bullet \frac{fu \bullet CL_{int}}{Q} = fu \bullet CL_{int} = CL_{int}^{total} \\ & CL \ is \ determined \ by \ intrinsic \ clearance \end{aligned}$$

- thus CL is determined by intrinsic clearance
- independent of changes in Q
- e.g. phenytoin, warfarin, quinidine

Other Drugs

$fu{\color{red} \bullet} CL_{int} \quad Q$

- capacity limited binding insensitive
- all three parameters important
- e.g. theophylline, antipyrine

Systemic Availability

- Once the drug is absorbed across the GI tract membrane the drug must get through the liver
- The extent of the first-pass metabolism can be determined from the extraction ratio, E
- Fmax = 1 E
- e.g. morphine P.O.. 30 mg cf. IV 5 mg

e.g. morphine r.O 30 mg ci. iv 3 mg	
Liver Disease	
Systemic Availability	
 A small change in E may have a large effect on F e.g. E = 0.95 to 0.90 causes F to double 	
In chronic liver disease porta-systemic shunt may reduce First-Pass effect	
High clearance drugs may be well absorbed after P.O. dosage	
- e.g. morphine 30 mg P.O. may be similar to 30 mg I.V.	

Objectives

- Describe various processes by which drugs are metabolized
- Describe induction and inhibition of metabolism
- Use the venous equilibration model to describe hepatic clearance and the effect of liver disease on drug elimination

•			
•			