Drug Distribution	
	J
	1
Objectives	
 to understand the processes by which drugs distribute throughout the body 	
• to understand the effect of protein binding	
on drug distributionto understand the methods used to measure	
protein binding	
Drug Distribution	
• transfer of drug between regions of the body	
 distribution between blood/plasma, tissues, 	
organ, body fluids • drug characteristics, tissue properties and	
blood flow determine distribution	

Chapter 29

1

Drug Concentrates in Specific Tissues

- Chloroquine in liver
 - concentration 1000 times plasma concentration
- Tetracycline to bone, teeth
- Radiopharmaceuticals
- Iodine in thyroid glands
- PCBs, highly lipid soluble compounds in fat tissue

Normal Bone Scan with 99mTc-MDP

Saha, G.B. 1984 Fundamentals of Nuclear Pharmacy, 2nd ed. P239 Fig 12-26

Drug Concentrates in Specific Tissues

- Chloroquine in liver
 - concentration 1000 times plasma concentration
- Tetracycline to bone, teeth
- Radiopharmaceuticals
- Iodine in thyroid glands
- PCBs, highly lipid soluble compounds in fat tissue

PCBs, highly lipid soluble compounds in fat tissue

- PCBs = polychlorinated biphenyls
 - Pesticide extenders ... industrial uses
 - Study in growing industrial Uses Restricted
 - Excreted only in Adhesives
 - http://www.epa.g
- DDT = dicophane Large, high- and low-voltage capacitors Liquid-cooled electric motors
 - Banned in severa Hydraulic systems

• Silent Spring by F Heat-transfer systems

Fluorescent light ballasts Electromagnets Liquid-filled cable .

PCBs, highly lipid soluble
compounds in fat tissue

- PCBs = polychlorinated biphenyls
 - Pesticide extenders ... industrial uses
 - Study in growing pigs
 - Excreted only in milk
 - $-\ http://www.epa.gov/toxteam/trtpcb1.htm$
- DDT = dicophane
 - Banned in several countries
- Silent Spring by Rachel Carson, 1962

Drug Distributes throughout Tissues and Body Fluids

- · Distribution determined by ability to pass through membranes, and lipid/water partition
- A common distribution pattern
- Highest concentration often in organs of elimination
 - kidney, liver, intestine

Chapter 29		4

Apparent Volume of Distribution

Drug	Liter/Kg	Liter/70 Kg
Chloroquine	94 – 250	6600 – 17500
Nortriptyline	21	1500
Digoxin	7	500
Lidocaine	1.7	120
Theophylline	0.5	35
Tolbutamide	0.11	8

Apparent Volume

- Pattern 1 > 3-5 L
- Pattern 2 > 30 50 L (total body water)
- Pattern 3 > Very large V
 - Chloroquine 17,000 L
- Pattern 4 > 10 200 L
 - Lidocaine 120 L

Test Values

Fluid	Volume (L)	Test Substance
Extracellular Fluid	13 – 16	Inulin, Na ²³ , Br ⁻ , I ⁻
Plasma	3 – 4	Evans Blue, I ¹³¹
		Albumin, Dextrans
Interstitial	10 – 13	
Fluid		
Intracellular	25 – 28	
Fluid		
Total Body	40 – 46	Antipyrine, D ₂ 0,
Water		Ethanol

Factors Affecting Drug Distribution

- Rate of Distribution
 - Membrane Permeability
 - Blood Perfusion
- Extent of Distribution
 - Lipid Solubility
 - pH pKa
 - Plasma Protein Binding
 - Intracellular Binding

Membrane Permeability

The walls of capillaries are very thin, consisting of only a single layer of endothelial cells, making them highly permeable

Capillary Walls

- quite permeable
- lipid material passes through quickly
- water soluble material more slowly
- pH and pKa influence transfer
 - renal capillaries and hepatic sinusoids allow extensive transfer
 - 'blood-brain' barrier restrict transfer to lipid soluble drugs

Blood Perfusion Rate

Organ	Perfusion Rate	% of Cardiac
	(ml/min/ml)	Output
Bone	0.02	5
Brain	0.5	14
Fat	0.03	4
Heart	0.6	4
Kidney	4.0	22
Liver	0.8	27
Muscle	0.025	15
Skin	0.024	6

Blood Perfusion...

- % of C.O. highest for brain, kidney, liver, muscle
- Perfusion rate highest for brain, kidney, liver, heart
- Concentration should change rapidly in these organs
 - other organs: adrenals (1.2/0.2%) and thyroid (2.4/1%)

Chapter 29	~
Chanter 29	/
Chapter 20	•

Relative Perfusion...

- thiopental gets into brain faster than into muscle
 - thiopental gets across brain or muscle quickly: perfusion limited - brain has higher perfusion [perfusion limited]
- penicillin gets into muscle more quickly than into brain
 - penicillin more polar, only slowly perfused into brain [transfer limited]

Relative Perfusion

Extent of Distribution

- · Plasma protein binding
 - proteins involved
 - forces involved
 - protein binding determination
 - protein binding equilibria
- · Tissue localization

Plasma Protein Binding

- Proteins involved
- Albumin
- 1-acid glycoprotein
- lipoprotein
- globulins

Binding Sites

Drugs

Binding Sites

 Bilirubin, Bile acids, Fatty Acids, Vitamin C, Salicylates, Sulfonamides, Barbiturates, Phenylbutazone, Tetracyclines, Probenecid Acidic Agents Albumin

 Adenisone, Quinacrine, Quinine, Streptomycin, Chloramphenicol, Digitoxin, Ouabain, Coumarin Basic Agents Globulins, 1,

Forces Involved

- Electrostatic Interactions
 - -NH₃+ of lysine and N-terminal amino acids
 - -NH₂+ of histidine and -S- of cysteine
 - -COO of aspartic and glutamic acid
- van der Waal's forces
 - dipole dipole, dipole induced, induced dipole
 induced dipole
- hydrogen bonding

Binding Forces

- short range forces distorted by altered protein configuration
- binding may be competitive resulting in displacement

Percent Unbound

Drug	Percent Unbound
Caffeine	90
Digoxin	77
Gentamicin	50
Theophylline	85
Phenytoin	13
Diazepam	4
Warfarin	0.8
Phenylbutazone	5
Dicumarol	3

Changes in Binding

- Slight changes in binding of tightly bound drugs can be significant
 - 99 to 98% leads to double the free concentrations
 - increased activity
 - increased elimination
- e.g. phenylbutazone displacing tolbutamide

Protein Binding Determination

- Spectral changes
- Gel filtration
- Equilibrium dialysis
- Ultrafiltration

Spectral Changes

- Drug have distinct UV or visible spectra

 absorbance versus wavelength
- Free and bound drug may have different spectra
- Fraction bound can be quantitated
- Fluorescence spectra could be used warfarin

Spectral Changes 30 30 30 30 30 30 30 Wanningth (rm) Reduces Inner Chappell, C.P. (1973); Research Advances in Methodology: Spectroscopic Techniques, Aun. NY Academy of Sciences, 226, p.55

Gel Filtration

- Porous gel acts as a molecular sieve
- Components separated on the basis of molecular size
 - Bound drug moves quickly
 - Free drug held in gel pores
- Determination of free and bound drug

Equilibrium Dialysis

- Free drug passes freely through membrane
- At equilibrium free concentration on each side of membrane is the same
- Equilibrium after 12 24 hours
- Drugs must be stable
- Concentrations can be determined on either side of the membrane

Equilibrium Dialysis...

Ultrafiltration

- Faster separation
- Free solution in solution is forced through membrane by centrifugation
- Filtrate contains free drug concentration

Ultrafiltration...

Protein Binding Equilibria

with One Type of Binding Site

 $[D] + [nP - rP] \quad [DP]$

- [D] is free drug concentration
- [nP] total binding sites = $n \cdot [P]$
- [rP] bound sites
- [nP rP] is free protein binding site

Chapter 29 13

Data Analysis - Plots

- One type of binding site
 - straight line
 - use slope and intercept
- Two or more binding sites
 - curved line plot
 - curve fitting

Tissue Localization (Binding)

- Binding to intracellular molecules, drug receptor >> pharmacological effect
- Binding to tissue protein (albumin, etc.), nucleic acids, or dissolution in lipid

 e.g. chloroquine in liver > DNA barbiturates > adipose tissue tetracycline > bone Difficult to measure - disrupt binding 	
 Weight Consideration Apparent volume of distribution, V, often proportional to body weight V often reported as xxx L/kg Appropriate if tissue proportions similar Very young or old could be quite different Overweight or underweight quite different different proportions of adipose tissue e.g. antipyrine 0.62 L/kg in normal weight and 0.46 L/kg in obese individuals 	

Chapter 29 15

Protein Binding Interaction

- One drug may displace another from the same binding site
- One drug bound may alter binding of another
- Interactions can occur when one drug displaces another
- Free drug concentration usually the important factor with drug activity
- Higher free drug concentration often causes an increase in elimination

Objectives

- to understand the processes by which drugs distribute throughout the body
- to understand the effect of protein binding on drug distribution
- to understand the methods used to measure protein binding