Nonlinear Pharmacokinetic Models

Objectives:

- To understand the schemes and differential equations associated with nonlinear pharmacokinetic models
- To understand the effect of parallel pathways
- To estimate the parameters Km and Vm
- To design appropriate dosage regimen for drugs with nonlinear elimination

Nonlinear Processes
• Lower concentration > first order
• Higher concentration > zero order
 Concentration or dose dependent kinetics
Enzyme reaction associated with metabolism may be saturable
Enzyme reaction may have a maximum rate limited by substrate
Basic enzyme kinetics have application to
pharmacokinetics

Chapter 31

Michaelis-Menten Kinetics

 $Rate \ of \ Elimination = \frac{Vm \bullet Cp}{Km + Cp}$

- where Vm is the maximum rate of metabolism
- and Km is Michaelis constant, the concentration (or amount) of drug at which the rate is 1/2 maximum

Scheme

• MM only elimination pathway

Differential Equation

• Single elimination pathway

$$\frac{dCp}{dt} = -\frac{V\,m^{\bullet}Cp}{Km + Cp}$$

Equation at Low Concentrations

- Km > Cp
- Km + Cp Km
- Therefore

$$\frac{dCp}{dt} = -\frac{Vm \cdot Cp}{Km} = -k' \cdot Cp$$

• pseudo first order elimination

Equation at High Concentration

- Cp > Km
- Km + Cp Cp
- Therefore

$$\frac{dCp}{dt} = -\frac{Vm \cdot Cp}{Cp} = -Vm$$

• zero order elimination

Linear Plot Zero order part First order part Time (hr)

High Dose - Concentration

- Slope constant on linear graph == zero order
- Slope approaches -Vm

Semi-log Plot First order part Zero order part Time (hr)

Low Dose - Concentration

- Slope constant on semi-log graph == first order
- Slope approaches -Vm/Km

Example - Phenytoin

- Average Km 4 mg/L (1 15 mg/L)
- Average Vm = 500 mg/day (100 1000 mg/day)
- Therapeutic window 10 20 mg/L (total Cp)
- Overdose possible if dose adjustment is not appropriate
- Half-life at low doses 24 hr, maybe greater than 24 hr at higher doses
- From 25 to 23 mg/L in 24 hours (cf. 25 > 12.5 > 6 mg/L when $t_{\rm 1/2}$ is 12 hr)

Evans, Schentag, Jusko, Applied Pharmacokinetics, Applied Therapeutics, Vancouver, WA 1992

Effect of MM Kinetics on t_{1/2}

• t_{1/2} larger as concentration increases; i.e. slower elimination

$$\frac{dC}{dt} = -kel \cdot C = -\frac{Vm \cdot C}{Km + C}$$

since kel =
$$\frac{0.693}{t_{1/2}}$$

$$\frac{0.693}{t_{1/2}} = \frac{Vm}{Km + C}$$

$$t_{1/2} = \frac{0.693 \bullet (Km + C)}{Vm}$$

Effect of MM Kinetics on \overline{Cp}

Parallel Pathways

• Linear and Nonlinear Elimination

Parallel Pathways

- At low dose kem and Vm/Km is larger, thus $t_{50\%}$ is smaller
- · At higher doses effective (pseudo first order) rate constant for MM process is small, thus $t_{50\%}$ is larger

Dosing Approaches

First Dose

- Use population (average) values for phenytoin
- Vm 7 mg/kg/day and Km 5 mg/L
- Aim for Cp = 15 mg/L in 80 kg patient Equation: Dose Rate= $\frac{Vm \cdot Cp}{Km + \overline{Cp}}$

$$= \frac{7 \times 80 \times 15}{(5 + 15)} = 420 \text{ mg/day}$$

PDR Recommends 300 mg/day - probably better to start low

Determine Second Dose Regimen

Give an initial dosage regimen and measure

- For example if after 420 mg/day, $\overline{\text{Cp}}$ is 20 mg/L
- Assume Km = 5 mg/L and calculate Vm $Vm = DR + \frac{DR \cdot Km}{\overline{Cp}} = 420 + \frac{420 \times 5}{20} = 525 \text{ mg/day}$

Dose Rate=
$$\frac{V \text{ m} \cdot \overline{Cp}}{Km + \overline{Cp}} = \frac{525 \times 15}{5 + 15} = 394 \text{ mg/day}$$

Chapter 31 7

Change in Dose

- Note 420 mg/day >> 20 mg/L
- and 394 mg/day \gg 15 mg/L
- 6% increase in dose results in 25% increase in concentration

A Nomogram

From Where, M.E. and Toon, T.E. 1939 Ch 10 " Floory soln" in Applied Pharmacolimetics, Ed Evans, W.E., Schoung, J.J., and Janko, W.J., 2 ad, Applied The repeatins, Fig. 16:13, page 332

Using a Nomogram

Line A from Cpss = 8 mg/L at 4.3 mg/kg/day (= 300 mg/day for 70 kg)
Line B from midpoint of shape to new Cpss = 15 mg/L
New Dose Rate is 5.2 mg/kg/day (= 364 mg/day)

After Two or More Concentrations

- Determined at Steady State (note extended halflife
- For Both (All) Concentrations
 - Good patient compliance
 - Steady State is Achieved
 - Protein Binding is unchanged
- Example
 - 300 mg/day -> 8 mg/L
 - 350 mg/day -> 20 mg/L

Graphical Method - 1

Graphical Method - 2

A Third Method

- After two previous dosage regimen
- For example, $Cp_1 = 8$ mg/L $Cp_2 = 20$ mg/L, $R_1 = 300$ mg/day, and $R_2 = 350$ mg/day

$$\begin{aligned} DR_i &= \frac{Vm^\bullet\overline{Cp_i}}{Km + \overline{Cp_i}} \\ 300 &= \frac{Vm^\bullet8}{Km + 8} \text{ and } 350 = \frac{Vm^\bullet20}{Km + 20} \end{aligned}$$

Solve Simultaneous Equations

$$300 \cdot \text{Km} + 300 \times 8 = \text{Vm} \cdot 8$$

$$350 \cdot \text{Km} + 350 \times 20 = \text{Vm} \cdot 20$$

$$300 \times 350 \cdot \text{Km} + 300 \times 350 \times 8 = 350 \times 8 \cdot \text{Vm}$$

$$300 \times 350 \cdot \text{Km} + 300 \times 350 \times 20 = 300 \times 20 \cdot \text{Vm}$$

$$300 \times 350 \times (20 - 8) = (300 \times 20 - 350 \times 8) \cdot \text{Vm}$$

$$\text{Vm} = \frac{1260000}{3200} = 394 \text{ mg/day}$$

$$\text{Km} = \frac{8 \cdot \text{Vm} - 300 \times 8}{300} = \frac{750}{300} = 2.5 \text{ mg/L}$$

Graphical Methods

• With more than two previous dosage regimens the graphical methods can be used with more data points or lines plotted.

Objectives

- To understand the schemes and differential equations associated with nonlinear pharmacokinetic models
- To understand the effect of parallel pathways
- To estimate the parameters Km and Vm
- To design appropriate dosage regimen for drugs with nonlinear elimination