	1
Pharmacodynamic Models	
Modeling Drug Effect versus Time	
Pharmacodynamic Models	
Objective	
 Understand the different types of concentration effect relationships 	
 Understand the mathematical relationships involved with Direct Reversible 	
Pharmacological Effect Kinetics	
Concentration - Effect Relationships	
Direct Reversible Effects	
Blood pressure controlMuscle Relaxant	
Indirect Reversible Effects Anticoagulation	
- Anti-diabetic • Irreversible Effects	
AntibioticsAnti-cancer	

Direct Reversible Effect

• Drug Effect proportional to Receptor Site Drug Concentration

 $C_p <===> C_r + Receptor <===> Drug Receptor Complex ---> Response$

• Relationship between Effect and Concentration described using the Hill Equation

Equation $C_{r,50\%} = \frac{E_{max} \cdot C_r}{C_{r,50\%} + C_r}$ $C_{r,50\%} = \frac{E_{max} \cdot C_r}{C_{r,50\%} + C_r}$

Data Analysis

- Non linear Regression using the Hill Equation (Boomer or SAAM II or ...)
- Or could rearrange to give a straight line $Effect = \frac{E_{max} \bullet C_r}{C_{r,50\%} + C_r}$

Rearranging gives: $\frac{E_{max}}{E} = \frac{C_{r,50\%} + C_r}{C_r}$

 $\log \, \frac{E}{E_{max} - E} \ = \ \bullet log C_r - log C_{r,50\%}$

Linearization

$$\log \frac{E}{E_{max} - E} = \bullet log C_r - log C_{r,50\%}$$

- • Plot of log (E/E $_{\rm max}$ -E) versus log C $_{\rm r}$ should give a straight line plot with a Slope of
- Exact if a single response

Alternate Linearization

Approximately Linear from 20 to 80% of the maximum intensity

Alternate Linearization ...

• From 20 to 80% of the maximum effect

$$E = a \bullet log C_r + b$$

this is also useful if the dose or concentration is not high enough to get a good estimate of $E_{\rm max}$

Continuing with this Thread

$$E = a \bullet log C_r + b$$

Rearranging gives: $logC = \frac{E - b}{a}$

For an IV Bolus one compartment model

$$\log C = \log C_0 - \frac{\text{kel} \cdot \text{t}}{2.303}$$

Thus E declines linearly with time: At least over the 20 to 80% part of the curve

$$\frac{E - b}{a} = \frac{E_{max} - b}{a} - \frac{kel \cdot t}{2.303}$$

$$E = E_{max} - \frac{m \cdot kel \cdot t}{2.303}$$

An Example

RR-Labetalol after one week Last Dose

Derendorf, H. and Hochhaus, G. Handbook of Pharmacokinetic/Pharmacodynamic Correlation, CRC Press, 1995 page 207

Where is the Receptor?

- Pharmacokinetic Compartment
 - Central Compartment
 - Peripheral Compartment
- "Hypothetical" Receptor Compartment
- Plot Effect versus 'Concentration'

Example Data

Further reading?

- Hypothetical Response Compartment
 - Sheiner Model (Muscle Relaxants): L.B. Sheiner., et al. 1979 Clin. P'col. Therap., 25:358-371
- Indirect Reversible Response
 - Warfarin: R.A. O'Reilly, et al. 1963 J. Clin. Invest., 42:1542
- Irreversible Response
 - Antibiotics, Anti-cancer drugs: W.J. Jusko 1973 J. Pharm. Sci., 60:892

Chapter 35 5

Objectives

- Objective
 - Understand the different types of concentrationeffect relationships
 - Understand the mathematical relationships involved with Direct Reversible Pharmacological Effect Kinetics

Chapter 35 6