Pharmacodynamic Models

Modeling Drug Effect versus Time

Pharmacodynamic Models

• Objective
 – Understand the different types of concentration-effect relationships
 – Understand the mathematical relationships involved with Direct Reversible Pharmacological Effect Kinetics

Concentration - Effect Relationships

• Direct Reversible Effects
 – Blood pressure control
 – Muscle Relaxant
• Indirect Reversible Effects
 – Anticoagulation
 – Anti-diabetic
• Irreversible Effects
 – Antibiotics
 – Anti-cancer
Direct Reversible Effect

- Drug Effect proportional to Receptor Site Drug Concentration

\[C_r \iff C_r + \text{Receptor} \iff \text{Drug Receptor Complex} \implies \text{Response} \]

- Relationship between Effect and Concentration described using the Hill Equation

\[\text{Effect} \begin{array}{c} \equiv \ \frac{E_{\text{max}} \cdot C_r^\gamma}{C_r^{50\%} + C_r^\gamma} \\ \end{array} \]

Maximum Response Concentration producing 50% maximum

Effect of E_{max} Concentration at Receptor

Data Analysis

- Non linear Regression using the Hill Equation (Boomer or SAAM II or …)

- Or could rearrange to give a straight line

\[\text{Effect} = \frac{E_{\text{max}} \cdot C_r^\gamma}{C_r^{50\%} + C_r^\gamma} \]

Rearranging gives:

\[E_{\text{max}} = \frac{C_r^{50\%} + C_r^\gamma}{C_r^\gamma} \]

\[\log \left(\frac{E}{E_{\text{max}} - E} \right) = \gamma \cdot \log C_r - \log C_r^{50\%} \]

Linearization

\[\log \left(\frac{E}{E_{\text{max}} - E} \right) = \gamma \cdot \log C_r - \log C_r^{50\%} \]

- Plot of $\log (E/E_{\text{max}} - E)$ versus $\log C_r$ should give a straight line plot with a Slope of γ

- Exact if a single response
Alternate Linearization

Approximately Linear from 20 to 80% of the maximum intensity

Alternate Linearization …

• From 20 to 80% of the maximum effect

\[E = a \log C_r + b \]

this is also useful if the dose or concentration is not high enough to get a good estimate of \(E_{\max} \)

Continuing with this Thread

\[E = a \log C_r + b \]

Rearranging gives:

For an IV Bolus one compartment model

\[\log C = \log C_0 - \frac{k_{el} t}{2.303} \]

Thus \(E \) declines linearly with time. At least over the 20 to 80% part of the curve

\[E_{\max} - \frac{E - b}{a} = \frac{E_{\max} - b}{a} - \frac{k_{el} t}{2.303} \]

\[E = E_{\max} - \frac{m \cdot k_{el} t}{2.303} \]
An Example

R.R.-Labetalol after one week
Last Dose

Where is the Receptor?

- Pharmacokinetic Compartment
 - Central Compartment
 - Peripheral Compartment
- "Hypothetical" Receptor Compartment
- Plot Effect versus ‘Concentration’

Example Data
PK Model with Effect Compartment

Hysteresis in Plot

Further reading?
- Hypothetical Response Compartment
- Indirect Reversible Response
- Irreversible Response
Objectives

• Objective
 – Understand the different types of concentration-effect relationships
 – Understand the mathematical relationships involved with Direct Reversible Pharmacological Effect Kinetics