<table>
<thead>
<tr>
<th>Function: $f(t)$</th>
<th>Laplace: $f(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1$</td>
<td>$\frac{1}{s}$</td>
</tr>
<tr>
<td>$A$</td>
<td>$\frac{A}{s}$</td>
</tr>
<tr>
<td>$A \cdot e^{-a \cdot t}$</td>
<td>$\frac{A}{s+a}$</td>
</tr>
<tr>
<td>$A \cdot t \cdot e^{-a \cdot t}$</td>
<td>$\frac{A}{(s+a)^2}$</td>
</tr>
<tr>
<td>$\frac{A}{a} \cdot (1-e^{-a \cdot t})$</td>
<td>$\frac{A}{s \cdot (s+a)}$</td>
</tr>
<tr>
<td>$A \cdot \left[ \frac{1}{a \cdot b} + \frac{e^{-a \cdot t}}{a \cdot (a-b)} - \frac{e^{-b \cdot t}}{b \cdot (a-b)} \right]$</td>
<td>$\frac{A}{s \cdot (s+a) \cdot (s+b)}$</td>
</tr>
<tr>
<td>$\frac{A}{(b-a)} \cdot (e^{-a \cdot t} - e^{-b \cdot t})$</td>
<td>$\frac{A}{(s+a) \cdot (s+b)}$</td>
</tr>
<tr>
<td>$\frac{A}{a} \cdot t - \frac{A}{a^2} \cdot (1-e^{-a \cdot t})$</td>
<td>$\frac{A}{s^2 \cdot (s+a)}$</td>
</tr>
</tbody>
</table>

\textsuperscript{1}From: Table I, Mayersohn and Gibaldi, Amer. J. Pharm. Ed., 34(4) 608-614 (1970)