PHAR 7633 Chapter 9
Calculation of Bioavailability Parameters

Bioavailability Calculations

Student Objectives for this Chapter

After completing the material in this chapter each student should:-

- be able to calculate ka using
  - the method of Residuals including
    - drawing the C_tlate line
    - estimating the residual values
    - drawing the residual line (and possibly rescaling the time axis)
  - the method of Wagner and Nelson
  - the method of Inspection
  and describe when each method may be most appropriate
- be able to calculate F using plasma (AUC) or urine (U_∞) data
- understand the difference between absolute and relative bioavailability and be able to convert between these values

On many occasions you will be able to get the parameter values from tables and references. However, you should also know how to get these values from the data. The two parameters we will concentrate on in this Chapter are ka and F. These values can be used to compare dosage forms or brands. In Chapter 8 we saw the effect changing ka or F has on the plasma concentration time curve. In this chapter we will calculate ka and F from drug concentration versus time data.

This page was last modified: Wednesday 26 May 2010 at 08:50 AM

Material on this website should be used for Educational or Self-Study Purposes Only

Copyright © 2001-2014 David W. A. Bourne (david@boomer.org)
PHAR 7633 Chapter 9
Calculation of Bioavailability Parameters

Method of Residuals

Starting with the equation for \( C_p \) versus time

\[
C_p = \frac{F \cdot Dose \cdot ka}{V \cdot (ka - kel)} \cdot \left[ e^{-kel \cdot t} - e^{-ka \cdot t} \right]
\]

Equation 9.2.1 Cp versus Time after Oral Administration

this can be written as

\[
C_p = A \cdot e^{-kel \cdot t} - A \cdot e^{-ka \cdot t}
\]

Equation 9.2.2 Simplified Equation for Cp versus Time

where \( A = \frac{F \cdot Dose \cdot ka}{V \cdot (ka - kel)} \)

Equation 9.2.3 The Intercept, A
If one of the rate constants (ka or kel) is much larger than the other, the method works best if the difference is at least five times, then the faster differential will approach zero more quickly, and at later times can be ignored. If we plot Cp versus time on semi-log graph paper we will see that the slope will approach a straight line.

The equation for this straight line portion can be obtained from the equation for Cp by setting the faster term (usually $e^{-ka\cdot t}$) to zero:

$$Cp^{late} = A \cdot e^{-kel\cdot t}$$

Equation 9.2.4 Cp^{late} versus Time

http://www.boomer.org/c/p4/c09/c09.html
and plotting $C_p^{late}$ versus time gives a straight line on semi-log graph paper, with a slope $(\ln) = -kel$ and intercept $= A$.

Now looking at the equation for $C_p$ versus time again.

$$C_p = A \cdot e^{-kel \cdot t} - A \cdot e^{-ka \cdot t} = C_p^{late} - A \cdot e^{-ka \cdot t}$$

Equation 9.2.5 $C_p$ versus Time including $C_p^{late}$

Therefore

$$\text{Difference or Residual} = C_p^{late} - C_p = A \cdot e^{-ka \cdot t}$$

Equation 9.2.6 Difference or Residual versus Time

Plotting the $\ln$ (Residual) versus time should give another straight line graph with a slope $(\ln)$ equal to $-ka$ and the same intercept as before, i.e. $A$.

$$\ln(\text{Residual}) = \ln(A) - ka \cdot t$$

Equation 9.2.7 $\ln$(Residual) versus Time

Figure 9.2.3 Semi-log of Plot of Residual versus Time

This is the method of residuals or "feathering".

It can give quite accurate values of $kel$, $ka$, and $V/F$ if:

i) one rate constant is at least five times larger than the other and

ii) both absorption and elimination are first order processes.

An Example Calculation Using the Method of Residuals

Table 9.2.1 Example Data for the Method of Residuals
<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>Plasma Concentration (mg/L)</th>
<th>Cp(late) (mg/L)</th>
<th>Residual [Col3 - Col2] (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>1.91</td>
<td>5.23</td>
<td>3.32</td>
</tr>
<tr>
<td>0.5</td>
<td>2.98</td>
<td>4.98</td>
<td>2.00</td>
</tr>
<tr>
<td>0.75</td>
<td>3.54</td>
<td>4.73</td>
<td>1.19</td>
</tr>
<tr>
<td>1.0</td>
<td>3.80</td>
<td>4.50</td>
<td>0.70</td>
</tr>
<tr>
<td>1.5</td>
<td>3.84</td>
<td>4.07</td>
<td>0.23</td>
</tr>
<tr>
<td>2.0</td>
<td>3.62</td>
<td>3.69</td>
<td>0.07</td>
</tr>
<tr>
<td>3.0</td>
<td>3.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>2.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>2.04</td>
<td></td>
<td>Residual = 5.5 * e^{-2.05 * t}</td>
</tr>
<tr>
<td>6.0</td>
<td>1.67</td>
<td></td>
<td>Cp(late) = 5.5 * e^{-0.2 * t}</td>
</tr>
<tr>
<td>7.0</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9.2.4 Figure Illustrating the Method of Residuals
The objective of this panel is to illustrate the Method of Residuals for determining information about the drug absorption process.

**First:** Draw the Cp\text{late} line by changing the intercept (A(k1)) and slope (k1) values. Press the Cp(late) button to plot the line and calculate the residual values.

**Second:** Draw the Residual line by changing the intercept (A(k2)) and slope (k2) values. Press the Plot Residual button to plot the residual line.

By trial and error best fit lines can be drawn and the parameters determined.

Up to eleven (11) different data points can be entered instead of the example data provided. Leave fields empty if there are fewer than 11 data points in your data set.

**For practice** try calculating the absorption rate constant, ka, using the method of residuals. Compare your answers with the computer! Note the value of the ratio ka/\text{kel}.

*Video/Audio Tutorial*

*Podcast Available*
PHAR 7633 Chapter 9
Calculation of Bioavailability Parameters

Wagner-Nelson Method

Another method of calculating $ka$ is the Wagner-Nelson method

Advantages:

i) The absorption and elimination processes can be quite similar and accurate determinations of $ka$ can still be made.

ii) The absorption process doesn't have to be first order. This method can be used to investigate the absorption process. I have used this type of method to investigate data obtained after IM administration and found that two absorption steps may be appropriate. Possibly a fast step from drug in solution and a slower step from drug precipitated at the injection site. The method can provide very useful information about the absorption processes with different dosage forms.

Disadvantages:

i) The major disadvantage of this method is that you need to know the elimination rate constant, from data collected following intravenous administration.

ii) The required calculations are more complex.

Theory

The working equations can be derived from the mass balance equation:

\[
\text{Amount Absorbed (A)} = \text{Amount in Body (X)} + \text{Amount Eliminated (U)}
\]

Equation 9.3.1 Mass Balance Equation

or

\[
A = X + U
\]

Equation 9.3.2 Mass Balance Equation

Differentiating each term with respect to time gives:

\[
\frac{dA}{dt} = \frac{dX}{dt} + \frac{dU}{dt}
\]

Equation 9.3.3 Differentiated Equation

or

\[
\frac{dA}{dt} = V \cdot \frac{dC_p}{dt} + V \cdot k_{el} \cdot C_p
\]

Equation 9.3.4 Rate of Change of Amount Absorbed

or
\[ dA = V \cdot dC_p + V \cdot kel \cdot C_p \cdot dt \]

Integrating gives:

\[ A = V \cdot C_p + V \cdot kel \cdot \int_0^t C_p \cdot dt \]

**Equation 9.3.5 Amount Absorbed versus Time**

or

\[ \frac{A}{V} = C_p + kel \cdot \int_0^t C_p \cdot dt \]

**Equation 9.3.6 Amount Absorbed divided by Volume versus Time**

Taking this to infinity where \( C_p \) equals 0

\[ \frac{A_{max}}{V} = kel \cdot AUC_C^\infty \]

**Equation 9.3.7 Maximum Amount Absorbed divided by Volume of Distribution**

Finally \( (A_{max} - A) \), the amount remaining to be absorbed can also be expressed as the amount remaining in the GI, \( X_g \)

\[ \frac{X_g}{V} = \frac{A_{max}}{V} - \frac{A}{V} \]

**Equation 9.3.8 Amount Remaining to be Absorbed**

We can use this equation to look at the absorption process. If, and only if, absorption is a single first order process.

\[ \frac{X_g}{V} = \frac{X_g^0}{V} \cdot e^{-ka \cdot t} \]

or

\[ \left[ \frac{A_{max}}{V} - \frac{A}{V} \right] = \frac{X_g^0}{V} \cdot e^{-ka \cdot t} \]

Thus a plot of \( \ln (A_{max} - A) \) versus time will give a straight line for first order absorption with a slope \((\ln) = -ka\). Note that linear or other types of plots may reveal other absorption behavior. For example a straight line on linear graph paper might suggest that absorption follows zero order kinetics, such as with an infusion step or an attempted mimicking of zero order absorption with a
patch or another slow release delivery device.

### Table 9.3.1 Example Data for the Method of Wagner-Nelson

<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>Plasma Concentration (mg/L)</th>
<th>Column 3 ΔAUC</th>
<th>Column 4 AUC</th>
<th>Column 5 kel AUC</th>
<th>A/V [Col2 + Col5]</th>
<th>(A\text{max} - A)/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.9</td>
</tr>
<tr>
<td>1.0</td>
<td>1.2</td>
<td>0.6</td>
<td>0.6</td>
<td>0.12</td>
<td>1.32</td>
<td>3.58</td>
</tr>
<tr>
<td>2.0</td>
<td>1.8</td>
<td>1.5</td>
<td>2.1</td>
<td>0.42</td>
<td>2.22</td>
<td>2.68</td>
</tr>
<tr>
<td>3.0</td>
<td>2.1</td>
<td>1.95</td>
<td>4.05</td>
<td>0.81</td>
<td>2.91</td>
<td>1.99</td>
</tr>
<tr>
<td>4.0</td>
<td>2.2</td>
<td>2.15</td>
<td>6.2</td>
<td>1.24</td>
<td>3.44</td>
<td>1.46</td>
</tr>
<tr>
<td>5.0</td>
<td>2.2</td>
<td>2.2</td>
<td>8.4</td>
<td>1.68</td>
<td>3.88</td>
<td>1.02</td>
</tr>
<tr>
<td>6.0</td>
<td>2.0</td>
<td>2.1</td>
<td>10.5</td>
<td>2.1</td>
<td>4.1</td>
<td>0.8</td>
</tr>
<tr>
<td>8.0</td>
<td>1.7</td>
<td>3.7</td>
<td>14.2</td>
<td>2.84</td>
<td>4.54</td>
<td>0.36</td>
</tr>
<tr>
<td>10.0</td>
<td>1.3</td>
<td>3.0</td>
<td>17.2</td>
<td>3.44</td>
<td>4.74</td>
<td>0.16</td>
</tr>
<tr>
<td>12.0</td>
<td>1.0</td>
<td>2.3</td>
<td>19.5</td>
<td>3.9</td>
<td>4.9</td>
<td>-</td>
</tr>
<tr>
<td>∞</td>
<td>0.0</td>
<td>5.0</td>
<td>24.5</td>
<td>4.9</td>
<td>4.9</td>
<td>-</td>
</tr>
</tbody>
</table>

The data \((A\text{max} - A)/V\) versus time can be plotted on semi-log and linear graph paper.

![Figure 9.3.1 Semi-log plot of \((A_{\text{max}} - A)/V\) versus Time](image)
Figure 9.3.2 Linear plot of $(A_{\text{max}} - A)/V$ versus Time

Plotting $(A_{\text{max}} - A)/V$ versus time produces a straight line on semi-log graph paper and a curved line on linear graph paper. This would support the assumption that absorption can be described as a single first process. The first-order absorption rate constant, $k_a$, can be calculated to be $0.306 \text{ hr}^{-1}$ from the slope of the line on the semi-log graph paper.

For practice try calculating the absorption rate constant, $k_a$, using the Wagner-Nelson Method. Compare your answers with the computer!

References

PHAR 7633 Chapter 9
Calculation of Bioavailability Parameters

Method of Inspection

The method of Residuals and the Wagner-Nelson methods are useful technique for determining good estimates of $ka$. A computer program providing non-linear regression analysis may be able to provide even more accurate estimates of $ka$. Therefore, a quick, approximate method might be of interest. The method of inspection could be useful in this role. It is capable of providing a quick, approximate estimate of $ka$ for checking the results obtained from other methods or as an initial estimate for more detailed analysis (Swintosky, J.V. et al., 1969).

Requirements for the Method of Inspection

- We assume that $ka$ is much larger than $kel$. That is, that $ka$ is at least five time greater than $kel$. This is the same requirement as for the Method of Residuals when $ka$ is greater than $kel$.
- Assume that absorption is complete (i.e. approximately 95 % complete) at the time of the peak concentration. This follows from the first assumption

The Method

The first step is to estimate the time of the peak drug concentration by inspection. If we assume that the time of peak is approximately five time the absorption half-life:

$$t_{peak} = 5 \times t_{1/2(\text{absorption})}$$

Equation 9.4.1 Time of Peak Concentration

or

$$t_{1/2(\text{absorption})} = \frac{t_{peak}}{5}$$

Equation 9.4.2 Drug Absorption Half-Life, $t_{1/2(\text{absorption})}$

From this value for $t_{1/2(\text{absorption})}$ we can estimate the absorption rate constant.

$$ka = \frac{ln(2)}{t_{1/2(\text{absorption})}} \times \frac{0.693}{t_{1/2(\text{absorption})}}$$

Equation 9.4.3 Absorption rate constant
An Example

Considering the results illustrated in Figure 9.4.1 the time of peak can be estimated to be approximately 1.5 hours.

![Figure 9.4.1 Linear Plot of Drug Concentration versus Time after Oral Administration Illustrating \( t_{\text{peak}} \)](http://www.boomer.org/c/p4/c09/c09.html)

With a \( t_{\text{peak}} \) of 1.5 hour the \( t_{1/2} \) (absorption) can be estimated as \( 1.5/5 = 0.3 \) hour. And \( k_a \) can be estimated as \( \ln(2)/0.3 = 0.693/0.3 = 2.3 \) hr\(^{-1} \). For comparison the \( k_a \) value used to calculated these data was 2 hr\(^{-1} \).

References


This page was last modified: Thursday 23 May 2013 at 12:51 PM

Material on this website should be used for Educational or Self-Study Purposes Only

Copyright © 2001-2014 David W. A. Bourne (david@boomer.org)
Calculation of F

So far we have looked at the equation for calculating $C_p$ as a function of time, and then methods of determining $k_a$ and $k_{el}$. That is the method of residuals, the Wagner-Nelson method and the method of inspection. Now to continue, we can look at methods of calculating $F$, the extent of absorption, i.e. the fraction of the dose which is absorbed.

Returning to the equation for $C_p$ as a function of time

$$C_p = \frac{F \cdot \text{Dose} \cdot k_a}{V \cdot (k_a - k_{el})} \cdot [e^{-k_{el}t} - e^{-k_a t}]$$

Equation 9.5.1 Drug Concentration versus Time after Oral Administration

We can calculate $k_a$ and $k_{el}$ given $C_p$ versus time data. From the method of residuals, the intercept can be determined as

$$\text{Intercept} = F \cdot \text{Dose} \cdot k_a$$

$$V \cdot (k_a - k_{el})$$

Since we know the dose and have calculated $k_a$ and $k_{el}$, it is possible to calculate $F/V$. However, with only data from a single oral administration available that is all we can determine; we cannot separate $V$ and $F$. Of course if we have IV data for $k_{el}$ and $V$, we could use this to determine $F$.

Thus $F$ must be determined by comparison with another dose administration. If the other dosage form is an intravenous dose then the $F$ value is termed the absolute bioavailability. In the case where the reference dosage form is another oral or other non IV product, the value for $F$ is termed the relative bioavailability.

Using plasma data

When a bioavailability study is conducted at least two dosage forms are administered to each subject. One dosage form is the product to be tested, while the other dosage form is a standard or reference dosage form. This may be an IV dose, oral solution or most commonly the original manufacturer's product. The doses are given with sufficient time between administrations for the drug to "washout" or be completely eliminated. We usually assume that each subject eliminates each dosage form at similar rates or use the estimate of the slowest rate to determine the wash-out period.

During the derivation of the Wagner-Nelson equations we calculated $A_{max}$, the maximum amount absorbed as:-

$$A_{max} = V \cdot k_{el} \cdot \int_0^\infty C_p \cdot dt$$

Equation 9.5.2 $A_{max}$, Total Amount Absorbed

or

$$A_{max} = V \cdot k_{el} \cdot AUC$$

and since
\[ A_{\text{max}} = F \cdot \text{Dose} \]

\[ F = \frac{V \cdot k_{el} \cdot \text{AUC}}{\text{Dose}} \]

**Equation 9.5.3 Bioavailability or Fraction Absorbed**

Now by giving two dosage forms A and B, and calculating AUC values for each we can calculate the relative bioavailability of dosage form A with respect to dosage form B, \( F_A / F_B \).

\[ \frac{F_A}{F_B} = \frac{V_A \cdot k_{el}^A \cdot \text{AUC}_A}{\text{Dose}_A} \cdot \frac{\text{Dose}_B}{V_B \cdot k_{el}^B \cdot \text{AUC}_B} \]

**Equation 9.5.4 Bioavailability of Product A Relative to Product B**

and if we can assume that \( k_{el}^A = k_{el}^B \) and \( V^A = V^B \) then

\[ F = \frac{F_A}{F_B} = \frac{\text{AUC}_A}{\text{AUC}_B} \times \frac{\text{Dose}_B}{\text{Dose}_A} \]

**Equation 9.5.5 Bioavailability, F, from AUC Comparison**

Thus a relative bioavailability, \( F \), can be calculated. If dosage form B is an IV administration then \( F_B = 1 \) and \( F = F_A \) and thus \( F_A \) represents the absolute bioavailability.

**Example**

\[ \text{AUC}_A = 12.4 \text{ mg.hr/L} \ \text{[Dose = 250 mg]} \] and \( \text{AUC}_B = 14.1 \text{ mg.hr/L} \ \text{[Dose = 200 mg]} \) then

\[ F = \frac{12.4}{250} \times \frac{200}{14.1} = 0.70 \]

**Using Urine Data**

We can do the same thing using urine data alone.

Since

\[ f_e = \frac{U_{\infty}}{Xg^0} = \frac{U_{\infty}}{F \cdot \text{Dose}} \]

**Equation 9.5.6 Fraction Excreted as Unchanged Drug, \( f_e \)**

therefore

\[ F = \frac{U_{\infty}}{f_e \cdot \text{Dose}} \]
and for two dosage forms

\[
\frac{F^A}{F^B} = \frac{U_\infty^A}{f_e^A \cdot Dose^A} \cdot \frac{fe^B \cdot Dose^B}{U_\infty^B}
\]

if we assume \( fe^A = fe^B \) then

\[
F = \frac{F^A}{F^B} = \frac{U_\infty^A}{U_\infty^B} \times \frac{Dose^B}{Dose^A}
\]

**Equation 9.5.7 Calculation of F from fe Values**

**Example**

250 mg dose; \( U_\infty^A = 175 \text{ mg} \); \( U_\infty^B = 183 \text{ mg} \)

\[
F = \frac{175}{183} = 0.96
\]

**Using IV and Oral Plasma Data**

\[
F = \frac{AUC_{oral}}{AUC_{IV}} \times \frac{Dose^{IV}}{Dose^{PO}}
\]

**Equation 9.5.8 Calculation of F from IV and PO AUC values**

When both IV and oral data are available it is possible to calculate \( V \) from the IV data and \( V/F \) from the oral data (for example using the Method of Residuals). The value for \( F \) can be calculated from the ratio of \( V \) and \( V/F \). Equation 9.5.9.

\[
F' = \frac{V_{IV}}{V/F_{Oral}}
\]

**Equation 9.5.9 Calculation of F from V and V/F**

_for practice_ try calculating the \( F \) from plasma or urine data. Compare your answers with the computer!

The last step after the calculation of absorption rate constant, \( ka \), using the method of residuals involves the calculation of \( F \) using Equation 9.5.9.

**Student Objectives for this Chapter**

This page was last modified: Tuesday 27 Aug 2013 at 02:20 PM

Material on this website should be used for Educational or Self-Study Purposes Only

Copyright © 2001-2014 David W. A. Bourne (david@boomer.org)