PHAR 7633 Basic Pharmacokinetics

Chapter 20

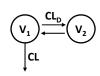
Non Compartmental Analysis

Typical Clinical Publication:

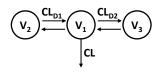
Wong SL et al., Clin. Pharmacol. Ther. 73: 304 (2003)

Pharmacokinetics and pharmacodynamics of abarelix, a gonadotropin-releasing hormone antagonist, after subcutaneous continuous infusion in patients with prostate cancer.

"Noncompartmental pharmacokinetics analysis." Pharmacokinetic parameters of abarelix, including maximum plasma drug concentration (C_{max}), time to reach C_{max} (T_{max}), area under the plasma concentration-time curve (AUC), apparent total volume of distribution during the terminal elimination phase (V_{β}/F) were estimated for each patient by standard noncompartmental methods. The average plasma concentration (C_{avg}) was calculated as AUC(0-t)/Duration of infusion, in which AUC(0-t) was defined as AUC from time 0 to the last measurable concentration. The area under the first moment curve (AUMC) was calculated with use of the trapezoidal rule. The subcutaneous mean residence time (MRT_{sc}) of abarelix after continuous subcutaneous infusion was calculated as AUMC/AUC – Infusion time/2.


All of the pharmacokinetic calculations were performed with WinNonlin (version 3.3; Pharsight Corp., Mountain View, CA)"

THE PROBLEM: Many Models and Curves



$$C_P = C_P^0 \cdot e^{-\lambda \cdot t}$$

$$C_P = C_1 \cdot e^{-\lambda_1 \cdot t} + C_2 \cdot e^{-\lambda_2}$$

$$C_P = C_1 \cdot e^{-\lambda_1 \cdot t} + C_2 \cdot e^{-\lambda_2 \cdot t}$$
$$+ C_3 \cdot e^{-\lambda_3 \cdot t}$$

Number of compartments = Number of curve exponentials.

THE QUEST: Capture Parameters Relevant to All Models and Drugs

Essential:

Others:

F: Bioavailability

V_c: Central Volume

CL: Clearance

 $t_{1/2\beta}$: Terminal

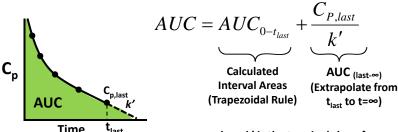
V_{ss}: Steady-State Volume

Half-life

THE ANSWER: Moment Analysis

Definition for a continuous function,
$$f(t)$$
; (t = time) $M_n = \int_0^\infty t^n \cdot f(t) \, dt$

<u>Moment</u>	<u>Statistics</u>	<u>Physics</u>	<u>Pharmacokinetics</u>
M_0	Numbers	Weight	AUC
M_1	Mean	Center of Mass	Mean Residence Time,
•			AUMC


☐ Non Compartmental Analysis:

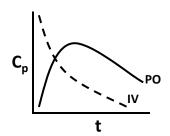
Calculate the areas of the C_p versus time curve (AUC; zero moment) and the first moment (t· C_p) curve (AUMC) using the trapezoidal rule without making any assumption concerning the number of compartments.

Moment Functions in PK: AUC

$$M_0 = \int_0^\infty t^0 \cdot C_p dt = \int_0^\infty C_p dt = AUC$$

☐ Numerical Calculation:

where k' is the terminal slope from semi-log graph of Cp vs. time


Utility of AUC

☐ Bioavailability (F)

The fraction of the dose available to the systemic circulation

$$F = \frac{AUC_{PO} \times Dose_{IV}}{AUC_{IV} \times Dose_{PO}}$$

$$CL = \frac{dA_e / dt}{C_p} = \frac{Elimination Rate}{C_p}$$

Thus :
$$\frac{dA_e}{dt} = CL \cdot C_P$$
 Rearrange

Integrate :
$$\int_0^\infty dA_e = CL \cdot \int_0^\infty C_p \cdot dt$$

 $A_e^\infty = Dose = CL \cdot AUC$

Does not depend on shape of IV disposition curve. Requires elimination from plasma compartment.

Moment Functions in PK: AUMC

$$M_1 = \int_0^\infty t \cdot C_p dt = AUMC$$

☐ Numerical Calculation:

$$AUMC = AUMC_{0-t_{last}} + \frac{C_{P,last} \cdot t_{last}}{k'} + \frac{C_{P,last}}{k'^2}$$

Calculated Interval Areas (Trapezoidal) $C_p \cdot t$ $C_{p,last} \cdot t_{last}$

AUMC _(last-∞) (Extrapolation)

where k' is the terminal slope from semi-log graph of Cp vs. time

AUMC: Area under the first moment curve

Numerical Calculation of AUMC: $=\int_0^\infty t \cdot C_p dt$

Table from: http://www.boomer.org/c/p4/c20/c2001.html

Time (hr)	Cp (mg/L)	Cp • t (mg.hr/L)	AUC (mg.hr/L)	AUMC (mg.hr²/L)
0	8	0	0	0
1	7.09	7.09	7.55	3.55
2	6.29	12.58	14.24	13.39
3	5.58	16.74	20.18	28.05
4	4.95	19.80	25.45	46.32
6	3.89	23.34	34.29	89.46
9	2.71	24.39	44.19	161.06
12	1.89	22.68	51.09	231.67
18	0.92	16.56	59.52	349.39
24	0.44	10.56	63.60	430.75
∞			67.27	549.31

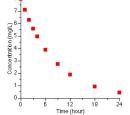


Figure 20.1.1 Plot of Cp vs Time (IV)

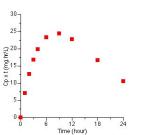
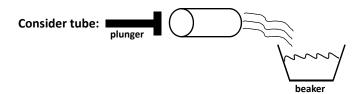


Figure 20.1.2 Plot of Cp x t vs Time (IV)

Utility of AUMC

$$MRT = \frac{AUMC}{AUC}$$


- MRT: Mean Residence Time, the average time that drug molecules remain in the body after dosing.
- Apparent elimination rate constant (kel')

$$kel' = \frac{1}{MRT}$$
 for an IV dose of drug

• Used for calculation of other parameters, particularly $V_{ss} = MRT \cdot CL$

Noncompartmental Generation of V_{ss}

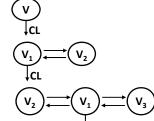
Volume of Distribution: $V_{ss} = CL \cdot MRT$

If 1 mL leaves in 1 sec: CL = 1 mL/sec

If it takes 10 sec for plunger to traverse tube: MRT = 10 sec

Then tube V must be: 10 sec x 1 mL/sec = 10 mL

Hamilton Flow/Volume Principle (1931).


V_{ss}: All Methods Yield Equivalent Values

• <u>V</u>_{ss}: Compartment Models

1 CMT
$$V_{ss} = V$$

$$2 CMT \qquad V_{ss} = V_1 + V_2$$

3 CMT
$$V_{ss} = V_1 + V_2 + V_3$$

• Noncompartment Analysis

$$V_{ss} = MRT \cdot CL$$

• Physiological Models

$$V_{ss} = V_{plasma} + \sum P_i \cdot V_{tissue}$$

Mean Residence Time: Drug Absorption

MAT: Mean Absorption Time

Input

V

CL

MRT_{IV} = $\frac{AUMC_{IV}}{AUC_{IV}} = \frac{V_{SS}}{CL}$ $kel' = \frac{1}{MRT_{IV}}$ PO Dose C_{p} $MRT_{PO} = \frac{AUMC_{PO}}{AUC_{PO}} = MAT + MRT_{IV}$ $MAT = MRT_{PO} - MRT_{IV}$ ka': Apparent Absorption Rate Constant

NOTE: We don't calculate CL or \mathbf{V}_{ss} using oral data.

Limitations of Noncompartmental Analyses

- While AUC and AUMC are easily generated, they are UNABLE to visualize or predict plasma concentrationtime profile for other dosing regimens.
- Requires the kinetics to be linear and stationary (i.e., time-independent) for simple applications.

Summary: Noncompartment Methods

- Calculation of AUC, AUMC, and MRT are valuable initial steps in PK data analysis.
- Calculation of

CL = Dose/AUC

is relevant for all traditional PK models regardless of numbers of exponentials.

• Calculation of

 $V_{ss} = MRT \cdot CL$

is easy and relevant for all linear models.