Student Objectives for This Chapter

- To understand the development and use of physiologically based pharmacokinetic (PBPK) models
- To understand the different types of concentration - effect relationships
- To understand the mathematical relationships involved with direct reversible pharmacological effect kinetics
Goals of Modeling

• Codify current facts
• Testing competing hypotheses
• Predicting system response under new conditions
• Estimating inaccessible system variables

F. Eugene Yates (1973)

Pharmacokinetics (PK)

➢ Description of the time course and factors affecting the handling of drugs by the body.

Important are:
- \(F \) = Bioavailability
- \(CL \) = Clearance
- \(V \) = Volume of Distribution

➢ Specific models are needed to make predictions of kinetic behavior of drugs at any dosages
 - Compartmental Models (e.g., 1 CM, 2 CM)
 - Physiologic Models (e.g., PBPK)
Physiologically Based Pharmacokinetic Models (PBPK)

PBPK model segregates the body into separate compartments representing organs interconnected by the blood circulation.

PBPK Model Requirements:
- Experimental data
- Physiological Parameters (Tissue size, blood flow)
- Model construction
- Program for numerical solution of differential equations

Model of Simple Tissue Distribution

Fick’s Law of Perfusion

\[
\frac{dA_T}{dt} = Q_T \cdot (C_a - C_{vT})
\]

\[
C_T = K_p \cdot C_{vT}
\]

\[
\frac{dA_T}{dt} = Q_T \cdot (C_a - \frac{C_T}{K_p})
\]

Assumptions:
- Rapid equilibrium between tissue & venous blood

\\
A_T = \text{Amount in tissue} \\
Q_T = \text{Tissue blood flow} \\
C_a = \text{Conc. arterial blood} \\
C_{vT} = \text{Conc. tissue venous blood} \\
K_p = \text{Tissue/plasma partition coefficient}

Initial uptake (amount/time) = Q_T \times C_a
Drug Distribution within Tissue – Permeability Issues

Tissue Subcompartments

Fick’s Law of Diffusion

\[
\frac{dA_T}{dt} = PS \cdot (C_1 - C_2)
\]

\(A_T = \) Amount in tissue
\(PS = \) Permeability/Surface area constant
\(C_1, C_2 = \) Concentration

Initial uptake (amount/time) = PSxC_1

→ Size, nature, permeability, binding and transporters can determine tissue uptake

PBPK Model Example: Thiopental

Figure 23.3.4 Some Results for Thiopental Bischoff and Dedrick 1968
(http://www.boomer.org/c/p4/c23/c2303.html)
PBPK Models: Pros vs. Cons

- **Advantages:**
 - The prediction of plasma (blood) and tissue PK of drug candidates prior to *in vivo* experiments
 - Support a better mechanistic understanding of PK properties from tissue kinetic data predicted, facilitating a more rational design during clinical candidate selection.
 - Extrapolation across species, routes of administration, duration and timing of drug input and dose levels.

- **Limitations:**
 - Considerable experimental and computational effort
 - Difficulty in obtaining realistic parameters

Pharmacodynamics (PD)

Description of the time-course and factors controlling drug effects on the body.

Important are:

- E_{max} = Capacity constant
- EC_{50} = Sensitivity constant
- k_{e0}, k_{in}, τ = Various time constants for specific models

SC Doses

![Graph showing serum rHuEPO concentration over time for different doses.](image)

Reticulocytes%

![Graph showing reticulocyte percentage over time.](image)

EPO stimulates production of RBC.
Basic Tenets of Pharmacodynamics

Capacity-Limitation

\[E = \frac{E_{\text{max}} \cdot C^\gamma}{EC_{50}^\gamma + C^\gamma} \]

Hill Function

The Law of Mass Action \((D + R \rightleftharpoons DR) \) and small quantity of targets leads to capacity-limitations in most responses.

Turnover and Homeostasis

\[\frac{dR}{dt} = k_{\text{production}} - k_{\text{loss}} \cdot R \]

Biological Factor (R)

Both diseases and therapeutic agents often interfere with the homeostasis in the body resulting from the natural turnover of biological substances or functions.

Biological Turnover Rates of Structures or Functions

Fast
- Electrical Signals (msec)
- Chemical Signals (min)
- Mediators, Electrolytes (min)
- Hormones (hr)
- mRNA (hr)
- Proteins / Enzymes (hr)
- Cells (days)
- Tissues (mo)
- Organs (year)
- Person (.8 century)

Slow

BIO

MARKERS

CLINICAL EFFECTS
Components of PK/PD Models

Drugs

C_p

C_e

H

H

k_in

k_out

Disposition Kinetics
Biophase Distribution
Biosensor Process
Biosignal Flux
Transduction
Response

Pharmacokinetics
Pharmacodynamics

Review article:

Jusko et al., *JPB* **23**: 5, 1995

Types of Drug Effects

Reversible
- **Direct**
 - Rapid
 - Slow
- **Indirect**
 - Synthesis, secretion
 - Cell trafficking
 - Enzyme induction

Irreversible
- Chemotherapy
- Enzyme inactivation
Clark’s Occupancy Theory: A. J. Clark (1933) proposed the first model to account for the quantitative behavior of a receptor-mediated process.

\[R + L \overset{k_{on}}{\underset{k_{off}}{\rightleftharpoons}} RL \rightarrow \text{Effect} \]

\[RL = \frac{R_{TOT} \cdot L}{K_D + L} \]

The “Law of Mass Action”

\[R = \text{Receptor}, \ L = \text{Ligand}, \ R_{TOT} = \text{Total Receptor} \]
\[K_D = \text{Equilibrium Dissociation Constant} \ (K_D = \frac{k_{on}}{k_{off}}) \]

Hill Function: \[E = \frac{E_{max} \cdot C^\gamma}{EC_{50}^\gamma + C^\gamma} \]

\[E_{max} = \text{Capacity} \]
\[EC_{50} = \text{Sensitivity} \]
\[\gamma = \text{Hill Factor} \]

Properties of Hill Function

\[E = \frac{E_{\text{max}} \cdot C^\gamma}{E_{\text{C}50}^\gamma + C^\gamma} \]

- When \(C \ll E_{\text{C}50} \)
 \[E = S \cdot C \]
 \[S = \frac{E_{\text{max}}}{E_{\text{C}50}^\gamma} \]

- When \(C = E_{\text{C}50} \)
 \[E = \frac{1}{2}E_{\text{max}} \]

- When \(C \gg E_{\text{C}50} \)
 \[E = E_{\text{max}} \]

LINEAR MODEL

\[E = E_0 \pm S \cdot C \]

\[S = \frac{E_{\text{max}}}{E_{\text{C}50}^\gamma} \]

Slopes of E vs. $\log C$ Plots are Often Linear

\begin{align*}
\text{Slope} &= m = \frac{E_{\max} \cdot \gamma}{4} \\
\text{Intercept} &= \ln EC_{50} - \left(\frac{2}{\gamma}\right)
\end{align*}

Simple Direct Effect: Inhibition of Cyclooxygenase Enzyme Activity in Blood by Dexamethasone

\[E = E_0 \left(1 - \frac{I_{\max} \cdot C}{IC_{50} + C}\right) \]

$IC_{50} = 1.42 \text{ nM}$
PK/PD Expectations For Simple Direct Effects

\[C = C_0 \cdot e^{-k \cdot t} \]

\[E = \frac{E_{\text{max}} \cdot C}{EC_{50} + C} \]

Profiles based on \(k = 0.4, E_{\text{max}} = 100, EC_{50} = 100 \).

PK/PD Expectations For Simple Direct Effects, con’t

\[E = \frac{E_{\text{max}} \cdot C}{EC_{50} + C} \]

“No hysteresis”
Kinetics of Pharmacologic Effects

\[E = E_0 - k \cdot m \cdot t \]

PK

![PK Graph]

\[\log C = \frac{-k}{2.3} t \]

Pharmacology

\[m = \frac{E_{\text{max}} \cdot \gamma}{4} \]

PD

\[E = E_0 - k \cdot m \]

\[\text{Slope} = m = \frac{E_{\text{max}} \cdot \gamma}{4} \]

NB: Half-life applies in PK but not PD!

Decline of Effect: Derivation

\[E = m \cdot \log A + e \]

\[\log A = \frac{E - e}{m} \]

\[k = \text{elimination constant} \]

Kinetics:

\[\log A = \log A^o - \frac{kt}{2.3} \]

Combine:

\[\frac{E - e}{m} = \frac{E^o - e}{m} - \frac{kt}{2.3} \]

\[E = E^o - \frac{km \cdot t}{2.3} \]

\[E^o = \text{Peak effect} \]

A = Amount of drug

\[m = \text{Slope} \]

\[e = \text{Intercept} \]
Pharmacodynamic Models Producing Delayed Responses

- **Direct Effect:** Active Metabolite
- **Direct Effect:** Biophase Distribution
- **Direct Effect:** Slow Receptor \(k_{on}/k_{off} \)
- **Antibody-Ligand Interaction**
- **Indirect Response:** Inhibition of \(k_{in} \)
- **Indirect Response:** Stimulation of \(k_{out} \)
- **Indirect Response:** Inactivation
- **Indirect Response:** Cell Life-Span Loss
- **Irreversible Effect:** Regeneration
- **Transduction Process**

Paralysis by Mechanical Twitch Response, %

\[
\frac{dC_e}{dt} = k_{eo}(C_p - C_e)
\]

\[
E = \frac{E_{max} \cdot C_e}{EC_{50} + C_e}
\]

Furchgott R (1955)
Segre, IL Pharmaco (1968)
Sheiner et. al., CPT (1979)
Role of k_{eo} in Determining Simple Drug Effects

PK/PD Model:

\[\begin{align*}
C_P & \xrightarrow{k_{eo}} C_e \\
\downarrow k_{el} & \\
\text{CONCENTRATION} & \text{EFFECT}
\end{align*} \]

\[E = \frac{E_{max} \cdot C_e}{EC_{50} + C_e} \]

Simulations of Plasma Drug Concentrations (C_P, dashed line) for monoexponential kinetics ($C_o = 1000$, $k_{el} = 0.4$), Effect Site Concentrations (C_e, solid lines) for the indicated values of k_{eo}, and Effect profiles for the E_{max} model with $E_{max} = 100$ and $EC_{50} = 100$.

Basic Indirect Response Models

Production \[k_{in} \] \[\rightarrow \] Response (Mediator) (R) \[\rightarrow \] Removal \[k_{out} \]

Drugs can alter the production (k_{in}) or dissipation (k_{out}) process normally controlling endogenous levels of R. Drugs can inhibit (폐) or stimulate (▲) any of these processes.

(Daynaka et al., JPB 21: 457 1993).
Irreversible Drug Effects: Antibiotics on Cell Killing

Effects of Various Intraperitoneal Doses of Piperacillin on Killing and Growth Kinetics of Pseudomonas Aeruginosa in Neutropenic Mice

\[
\frac{dR}{dt} = k_s \cdot R - k \cdot C \cdot R
\]

(Jusko, *JPS* 60: 892 1971)
(Zhi et al, *JPB* 16: 1988)

Factors Affecting PK/PD: Covariates

<table>
<thead>
<tr>
<th>Physiological</th>
<th>Disease</th>
<th>Drug Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE: Young/Old</td>
<td>Hepatic</td>
<td>Inhibitors</td>
</tr>
<tr>
<td>Sex</td>
<td>Renal</td>
<td>Inducers</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>Thyroid</td>
<td>Joint Mechanisms</td>
</tr>
<tr>
<td>Race</td>
<td>Cystic Fibrosis</td>
<td>Opposing Mechanisms</td>
</tr>
<tr>
<td>Genetics</td>
<td>Obesity</td>
<td></td>
</tr>
<tr>
<td>Stress</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pharmacokinetics and Pharmacodynamics of \(d \)-Tubocurarine in Infants, Children, and Adults

Infants show both reduced clearance (related to GFR) and greater sensitivity to dTC.

Influence of extreme obesity on the body disposition and neuromuscular blocking effect of atracurium

PK Parameters:

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{ss}), L/kgTBW</td>
<td>0.141</td>
<td>0.067</td>
</tr>
<tr>
<td>CL, ml/min/kgTBW</td>
<td>6.6</td>
<td>3.5</td>
</tr>
</tbody>
</table>

PD Parameters: \((E_{max} = 100) \)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{1/2}), min</td>
<td>8.3</td>
<td>7.4</td>
<td>312</td>
</tr>
<tr>
<td>EC_{50}, ng/ml</td>
<td>470</td>
<td>312</td>
<td>470</td>
</tr>
</tbody>
</table>
PK/PD and Pharmacogenetics

The β_2-adrenergic receptor gene polymorphism was assessed by PCR and found to be a major determinant of bronchodilator response to albuterol. J.J. Lima et al, CPT 65: 519 (1999).

Pharmacodynamic Caveats

- Measurements should be sensitive, gradual, reproducible, objective, and meaningful.
- Studies should include baseline and span 2 or 3 dose levels with effects from 0 to E_{max}.
- Measure major intermediary steps.
- Models should recognize mechanism(s) of drug action.
- Covariates are important!
Modeling Dynamic Effects

<table>
<thead>
<tr>
<th>PHARMACOKINETICS</th>
<th>TRANSDUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOPHASE</td>
<td>ADAPTATION</td>
</tr>
<tr>
<td>MECHANISM</td>
<td>PATHOPHYSIOLOGY</td>
</tr>
<tr>
<td>MODEL TYPE</td>
<td>DISEASE PROGRESSION</td>
</tr>
<tr>
<td>TURNOVER</td>
<td>COMPLEXITIES</td>
</tr>
</tbody>
</table>

Requires Integration of Diverse Components